Students’ Errors in the Mathematical Learning Process: a Survey*

HENDRIK RADatz

Student’s errors in mathematics education are not simply a result of ignorance and situational accidents. Most student mistakes are not due to inability, carelessness, or unique situational conditions, as was assumed at the beginning of the behaviouristic theory of education. Rather, student errors are the result or the product of previous experience in the mathematics classroom. According to the present state of error research, student errors:

- are causally determined, and very often systemic;
- are persistent and will last for several school years, unless the teacher intervenes pedagogically;
- can be analyzed and described as error techniques;
- can be derived, as to their causes, from certain difficulties experienced by students while receiving and processing information in the mathematical learning process, or from effects of the interaction of variables acting on mathematics education (teacher, curriculum, student, academic environment, etc.).

Student errors “illustrate” individual difficulties; they show that the student has failed to understand or grasp certain concepts, techniques, problems, etc., in a “scientific” or “adult” manner. Analyzing student errors may reveal the faulty problem-solving process and provide information on the understanding of and the attitudes toward mathematical problems.

From this perspective, error analysis gains importance in two respects. First, with regard to the requirements of academic practice, as an opportunity to diagnose learning difficulties, as a method of developing criteria for differentiating mathematical education, and as a means to create more awareness and support for the performance and understanding of individual students. Second, error analysis seems to be a remarkable starting point for research on the mathematical teaching-learning process. Error analysis must be considered a promising research strategy for clarifying some fundamental questions of mathematics learning.

The following is an attempt to give a brief historical survey. Of course this enumeration will not be exhaustive, nor will evaluation be free of a certain subjectivity (See Table on next page)

Error analysis in mathematical education has a long history, and is characterized by very different approaches and interests, which were shaped both by the contemporary mainstream of the sciences concerned, pedagogy and psychology, and by the objectives and forms of organization determined by the respective educational policies.

Three focal points and tendencies can be discerned:

1. Arithmetic constitutes the dominating subject matter area for the majority of the studies. It is only after the recent incisive reform concerning the content of mathematical curricula that research interest has extended to other topics of mathematical education.

2. Error theory was developed in Germany sporadically, with great intervals in between, and with little continuity, as opposed to its development in the U.S., for instance.

Notes

[2] ‘Animated Geometry’ are 1-3 minute, silent, black-and-white animated films devised and produced in the 1950s by J.L. Nicolet. A number of these films have been revised, computer-animated, and reissued in colour by Educational Solutions Inc., 80 Fifth Avenue, New York, NY 10011, USA.

[3] The label “Theorem” is attached to different geometrical results in different countries. In France it is applied to: “A line parallel to a side of a triangle divides the other two sides in the same proportion.”

[4] The film “Foundation of Geometry” is silent, in colour, and has a duration of 16.5 minutes. The computer animation was carried out by Serge Chicoine and André Fourrier of the University of Montreal. Enquiries about the availability of the film should be addressed to Educational Solutions Inc.

* Translated by Günter Seib
There is a pluralism of theoretical approaches to and explanatory attempts about the causes of student errors in the mathematical learning process, while error techniques in certain subject matter areas (e.g., written calculation methods within the set N) can be very succinctly described. It is remarkable that studies seldom extend beyond the national horizon. None of the American publications quotes a German study, and the converse is almost equally true.

<table>
<thead>
<tr>
<th>GERMAN PUBLICATIONS</th>
<th>ANGLO-AMERICAN PUBLICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranschburg 1904, 1916</td>
<td></td>
</tr>
<tr>
<td>Hylla 1916</td>
<td></td>
</tr>
<tr>
<td>Weimer 22, 23</td>
<td></td>
</tr>
<tr>
<td>Kießling 25, Korn 26</td>
<td></td>
</tr>
<tr>
<td>Weimer 25, 26; Rose 28; Seemann 29; Kießling 28, 29; Weimer 29; Fettweis 29</td>
<td></td>
</tr>
<tr>
<td>Osburn 24, Myers 24</td>
<td></td>
</tr>
<tr>
<td>Buswell 25, 26</td>
<td></td>
</tr>
<tr>
<td>Weimer 39</td>
<td></td>
</tr>
<tr>
<td>Seemann 31; Weimer 31; Kießling 32</td>
<td></td>
</tr>
<tr>
<td>Kießling 34</td>
<td></td>
</tr>
<tr>
<td>Weimer 39</td>
<td></td>
</tr>
<tr>
<td>Seemann 49</td>
<td></td>
</tr>
<tr>
<td>Schaffrath 59</td>
<td></td>
</tr>
<tr>
<td>Monsheimer 60; Kießling 60</td>
<td></td>
</tr>
<tr>
<td>Rose 61</td>
<td></td>
</tr>
<tr>
<td>Schaffrath 64</td>
<td></td>
</tr>
<tr>
<td>Krueger 65</td>
<td></td>
</tr>
<tr>
<td>Schlaak 68</td>
<td></td>
</tr>
<tr>
<td>Glück 71</td>
<td></td>
</tr>
<tr>
<td>Baumgarten 72; Jäkel 72</td>
<td></td>
</tr>
<tr>
<td>Pippig 75</td>
<td></td>
</tr>
<tr>
<td>Pippig 77; Radatz 77; Andelfinger 77; Bikhlan 78; Wiegard 78</td>
<td></td>
</tr>
<tr>
<td>Radatz 79</td>
<td></td>
</tr>
<tr>
<td>West 71; Carman 71; Ashlock 72; Reisman 72; Lankford 72; Ellis 72; Erlwanger 73; Baxter 73; Cox 73; Kane 74; Cox 75; Dodd 75; Engelhardt 75; Crawford 75; Hucherson 75; Blankenship 76; Ashlock 76; Burrows 76; Litte 76; Robitaille 76; Brown 77; Ginsburg 77; Grabner 77, Engelhard 77; Davis 78; Kent 78; Hopkins 78; Laursen 78</td>
<td></td>
</tr>
</tbody>
</table>

The great German interest in error analysis during the twenties must be understood, on the one hand, as due to the increasing importance of empirical-scientific pedagogy, which made use of the insights of experimental psychology, and which mostly ousted philosophical pedagogy from its former predominant role after World War I. On the other hand, a reform program began to take effect at that time which advocated fostering individuality, adapting all educa-
tional work to the child and his/her characteristics, and to the child's respective stage of development. On the part of psychology, the influence of three schools of thought can be recognized: psycho-analysis, Gestalt theory, and the so-called psychology of thinking (Denkpsychologie). These headings, however, subsume very complex and internally inconsistent theories. Freud, in particular, stressed error analysis as an epistemological method in his early lectures.

In Germany, Weimer is considered the founder of didactically oriented error research. His objective was to establish an error pattern in order to explain individual mistakes for all educational subjects and all age groups. In doing so, he distinguished, under the overall concept of "wrong" ("das Falsche"), between mistake (Irrtum), falsification (Fälschung), and errors (Fehler). Weimer grouped errors in five categories (familiarity errors, perseverance errors, similarity errors, mixed errors, and errors due to emotion or volition), making allowance for psycho-analytical insights in doing so.

Following Weimer, Seemann was less concerned with the diagnosis of poor individual performance and with developing suitable aids than with providing a psychological foundation for a didactical method for teaching mathematics. For him, mathematics errors were not the result of change, but phenomena arising from laws which were being created by a wrong combination of determining tendencies, the so-called "principle of least effort" having a dominating role in this. For arithmetic, Seemann distinguished three groups of errors: mechanical errors, associative errors, and functional errors.

Kießling was predominantly concerned with so-called error-proneness (Fehlsamkeit) as a personal disposition for mistakes, and with theories of error assessment and error prevention. While Fettweis pointed out errors in algebra, Rose attempted to establish a classification of the causes of error in mathematical education (inattention, ignorance of rules, confusion of concepts, and inability to recognize the characteristic features of a mathematical problem).

This development of error analysis was abruptly curtailed in 1933 by the Nazis seizing power, as they were opposed to the individualistic foundation of the prevailing educational system, and considered mathematics less important as compared to other subjects, which seemed better suited to promote the Nazi educational aims.

During the last decades, it has been difficult to discern systematic research on error theory in mathematical education. Accessible publications are either reprints of dated work [Seemann, Rose, Monsheimer-Türpitz], short surveys in handbooks and pedagogical encyclopedias [Knabe, Kießling, Kirchhof], or produced as by-products from other efforts [Krüger, Schlak, Glück, Grissemann, Schaffrath].

Upon analyzing performance tests in solving text problems, Schlak has observed certain focal points of errors: inadequate understanding of texts, incorrect number determination, etc. Grissmann, in his study on legasthenia and calculation performance, has pointed out some causal factors in calculation problems, as they can be derived from the casuistic-phenomenological research literature. The studies of Schaffrath, Krüger, and Glück are essentially preparatory work for diagnostic calculation tests, Glück treating so-called calculation errors at length. Upon analyzing performance in calculation toward the end of the second form, he was able to distinguish five error types: changes of operation, additive or multiplicative proximity, parts results, first digit only correct, and copying errors.

Two important studies continuing this discussion are those of Pippig. In his publication on calculation deficiencies and how to overcome them from a psychological perspective, Pippig considers those errors having their cause primarily in the psychological mechanisms of the imitative process. Pippig considers efforts directed at studying the calculation errors of students especially important as the ability to solve formal problems is a necessary, but not sufficient, condition for higher achievement in mathematical education. In his contribution to overcoming thinking errors, Pippig treats the errors and difficulties encountered when working at text problems. He describes causes of error in the different stages of the solution process.

Birkhan has used the analysis of mathematics students' errors as a tool of cognitive psychology, with the conceptual system of information processing theory as a backdrop. Radatz is concerned with pointing out the logical and regular character of most mistakes in mathematical education, and with the attempt to regroup error causes across individual mathematics content areas according to certain aspects of receiving and processing information by students.

In the USSR, a number of questions and problems were raised by the fundamental change of school structure and the related curricula reform at the beginning of the sixties. These problems led to manifold pedagogical-didactical research efforts. Among these, analyzing student errors or individual academic learning difficulties are the favoured methods to win new knowledge pertaining to mathematics-specific abilities, and to aspects of the mathematics teaching-learning process. The theoretical background is furnished by the statements of Marxist psychology. Unfortunately, the major part of these Soviet studies was made accessible in the shape of translations into English only within recent years. As examples for this, we should like to mention the studies by Kuznitskaya and Menchinskaya. Kuznitskaya has determined four error causes in the study of difficulties encountered by slightly retarded children in the attempt to solve mathematical problems: insufficient short-term memory, insufficient understanding of the problem conditions, errors due to lack of command of oral calculation rules, and incorrect use of the four basic operations. Menchinskaya stresses the regular character of student errors in mathematics education, and emphasizes the complexity of the processes of potential causes of error. She names four causal areas, which cannot be distinctly separated from one another:

- errors due to incorrect implementation of an operation;
- errors due to insufficient quality of conceptual understanding;
- mechanical errors due to lack of interest or to diversion;
- errors due to application of inappropriate rules or algorithms.

The very long tradition of error analysis in mathematics education research in the U.S. is evident in Buswell's [1925] monograph quoting 31 studies already existing at
that time which explicitly deal with arithmetical errors. Among these Uhl's study [1917] is especially important, as the latter, for the first time, supplemented the analysis of written exercises by classroom observations and diagnostic interviews in order to analyze error techniques and error causes. By means of this multi-level research method, Buswell was able to identify a multitude of error types in the four basic types of calculation. Continuing these studies, Brueckner and Burge attempted to typify error techniques. As to content, the American studies of that time were almost exclusively concerned with errors and difficulties encountered in the four written calculation methods within the quantity of natural numbers (the "four rules"). Research interest focused on five objectives:

1. Listing all potential error techniques;
2. Determining the frequency distribution of these error techniques across age groups;
3. Analyzing special difficulties, particularly encountered when doing written division, and when operating with zero;
4. Determining the persistence of individual error techniques;
5. Attempting to classify and group errors [see Grossnickel, Holland, Buswell, Schonell, Brueckner et al.]

These approaches were continued, during recent years, by the studies of Roberts, Lankford, Engelhard, and particularly Cox, which also served to formulate their statements more precisely.

A further group of American contributions to this topic is essentially concerned with the opportunities for error analysis offered to the mathematics teacher, with curricular and methodological activities adapted to these, and with the tests of the efficiency of special training programs aimed at reducing error frequency. Related to these are efforts to sensitize teachers for so-called "diagnostic teaching of mathematics", in which analysis of student errors plays an important role [Ashlock, Reisman, Robitaille], or to inform them of this method. A third research orientation may be seen in Erlwanger’s or Ginsburg's attempts to use error analysis as a method of investigating basic structures in the mathematical teaching-learning process. In this, they are strongly influenced by Piaget’s methods, as their studies are predominantly based on diagnostic talks and interviews, and on analyzing individual cases. For Erlwanger, Ginsburg, and others, most student errors are not of an accidental character, but are due to very individual problem-solving strategies and rules which go back to earlier experience and understanding of mathematics. In this, the most recent American developments in research on error analysis are converging, in their methods, and in their fundamental insights, as well, with the Soviet Union research approaches on one hand, and with the efforts made in the French IREM's on the other [Brousseau, Jaulin-Mannoni, Salin].

To conclude, we should like to sketch some research deficits and desirable research fields which have been suggested to us by an analysis of the accessible literature. Some research levels which have as yet hardly been worked at, are the following:

- conscious and subconscious processes in incorrect attempts to solve mathematical problems;
- detailed analyses of error causes derivable from interaction effects between the variables intervening in the mathematical teaching-learning process (teacher, curriculum, student, etc.);
- development of special didactical aids for treating particular learning difficulties and errors.

Beyond that, the problems of describing causes and of separating causal areas, of investigating the process character of the individual solution path, or of the methods of analysis in the field of research and teaching practice, will be topics for current and future efforts at research and didactical development.

We conclude this brief survey with a quote from one of Freud's lectures in 1908:

It must be stressed again that we do not assert that every single mistake (Fehlleistung) is logical (Sinnreich), despite the fact that I consider this likely. For us, it will suffice to demonstrate such a logic frequently in different forms of mistakes.

Bibliography

Ashlock, R. B., Error Patterns in Computation. Columbus, Ohio 1976

Baumgarten, A., Fehleranalyse der Schüler im Mathematikunterricht — ein Mittel, Selbständigkeit und Denkvermögen zu entwickeln. In: Mathematik in der Schule 10 (1972), S. 566-577

Brueckner, L. J., Diagnosis in Arithmetic In: 34th NSSE Yearbook, Bloomington 1935, S. 269-302

Burge, L., Types of Error and Questionable Habits of Work in Multiplication. In: The Elementary School Journal, 32 (1932), S. 185-194

Buswell, G. T. and Judd, C. H., Summary of Educational Investigation Relating to Arithmetic. Chicago: University of Chicago, 1925

Grossnickle, F.E., Constancy of Error in Learning Division with a Two-Figure Divisor. In: Journal of Educational Research, 33 (1939), S. 189 - 196.

Kielb, D., Der gegenwärtige Stand der Fehlerforschung. In: Die Deutsche Schule, 32 (1928), S. 158 - 162.
