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My interest in flexibility in equation solving comes from a 
research agenda whose aim is the study of flexibility in the 
teaching and learning of algebra. Several researchers have 
proposed operationalisations. One of the most relevant of 
these is the one proposed by Star and Seifert (2006). In this 
operational definition, flexibility is knowing multiple solu-
tion procedures to a problem and having the capacity to 
generate new and more efficient procedures to solve it. Even 
though this definition has had an impact on the research on 
flexibility (e.g., Xu et al., 2017), there are calls for a more 
comprehensive account (e.g., Ionescu, 2012) given flexibil-
ity’s contribution to efficient problem solving. 

Here I offer a reflection about flexibility in equation solv-
ing that extends the definition by Star and Seifert. To this 
end, I offer examples of equation solving that suggest that 
there is a need for another property in the definition, to 
deepen both the investigation of students’ flexibility in equa-
tion solving and its fostering in teaching. I add ‘connections’ 
because when performing transformational activities, stu-
dents make a number of procedural connections. 

 
Flexibility in equation solving  
As Star and Seifert note, the notion of flexibility is colloqui-
ally defined as the ability to change according to particular 
circumstances. In mathematics, however, it has a specific 
meaning. Think about the equations 

4(x + 1) = 8; 

4(x + 1) + 2 (x + 1) = 12; and 

4(x + 1) + 3x + 7 = 8 + 3x + 7 

and review the solutions presented in Figure 1. What do you 
observe? 

Both students solve the equations correctly. According to 
Star and Seifert, however, Student A creates more innovative 
solutions to the problems and completes the three equations 
using three different solution procedures. Student A divides 
by 4 as a first step in the first equation; combines the like 
terms x + 1 first in the second equation; and recognises and 
cancels the like terms 3x + 7 in the final equation. However, 
Student B uses the same (standard) algorithm in all cases: 
expand, combine, subtract from both, and divide. Student 
A’s solutions are more efficient; that is, they require fewer 

steps. Like Student B, Student A has the knowledge of stan-
dard algorithms, but Student A has the additional capacity to 
use them in non-standard ways in performing particular 
types of tasks. 

For Star and Seifert, flexibility in mathematics, then, can 
be defined as having knowledge of multiple solution proce-
dures to a problem, a sense of when each way is most 
efficient, and the capacity to invent or innovate creative new 
procedures. Qualities such as being able to create multiple 
and efficient solutions to a given problem make students 
more flexible thinkers and problem solvers. Star and Seifert 
accordingly “define a flexible solver as one who (a) has 
knowledge of multiple solution procedures, and (b) has the 
capacity to invent or innovate to create new procedures” 
(2006, p. 282) and consider these two as indicators of flexi-
bility in equation solving. I suggest extending this 
operationalisation and propose adding a third property to the 
above definition, namely: (c) the ability to make connections 
between mathematical ideas and concepts. 

In equation solving one of the main ideas is equivalence. 
Examples of mathematical understanding in terms of alge-
braic expressions and equations include: 

Algebraic expressions can be named in an infinite  
number of different but equivalent ways. For example: 
2(x – 12) = 2x – 24 = 2x – (28 – 4). 

A given equation can be represented in an infinite 
number of different ways that have the same solution. 
For instance, 3x – 5 = 16 and 3x = 21 are equivalent 
equations; they have the same solution, 7 (Charles, 
2005, p. 14). 

In order to become flexible, students must make contact 
with equivalent representations of the given expression or 
equation. Consider this equation used by Star and Seifert 
(2006, p. 286) to assess flexibility, and typically solved in 
mathematics classes using algebra: 0.3a + 0.2 = 1.1. Figure 2 
presents a number of different solutions. Based on Star and 
Seifert’s operationalisation, Student B (less flexible thinker) 
would solve the equation following standard algorithms 
(e.g., Solution 1), but how would Student A, who is a more 
flexible thinker, solve it? Would Student A see the equation 
as 3a + 2 = 11 instead and solve it accordingly, as in Solution 
4? Or would Student A represent the decimals by fractions 
and produce something like Solution 6? 

In fact, how more flexible thinkers would solve the prob-
lem is ambiguous. This implies the need to include another 
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Figure 1. Hypothetical solutions by two hypothetical  
students (adapted from Star & Seifert, 2006).
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property of flexibility, establishing connections. What 
makes this equation interesting is its richness in connections 
to mathematical ideas. The terms in the equation, and 
accordingly the equation itself, can be represented by vari-
ous equivalents. This is evident in Solutions 1 through 6. 

One of the other ways to solve the equation is to use the 
idea of backtracking. This begins by working forwards,  
i.e., working out what has been done to the variable a step  
by step, then working backwards to undo each procedure. 
Solution 7 shows the backtracking method, which uses a 
procedural type of connection (Businskas, 2008). 

Figure 3 shows some solutions to another, more compli-
cated, equation: 

According to Star and Seifert’s definition, a less flexible 
thinker is supposed to give Solution 1, where standard pro-
cedures are followed step by step. How more flexible 
thinkers would solve the problem is again ambiguous. 

In solving the equation, procedural types of connections 
are established, and examples are provided in Figure 3. 
Solution 2 shows the cover-up method. The idea in the back-
ground of this method is still working backwards. Here, the 
whole expression that has n in it is covered first to find the 
value covered up (◼ + 7 = 25), and the same is repeated 
until the value of n is found. Solution 3 presents how the 
equation is solved by the backtracking method. 

The examples provided here show that, even though abil-
ities such as being able to create multiple and efficient 
solutions to a given problem are important flexible behav-
iours in equation solving, there should be other qualities. 
These examples imply that linking concepts with broader 
ideas is one mechanism involved in flexibility. Making con-
nections must, therefore, be considered as a property of 
flexibility. As such, in addition to having knowledge of stan-
dard algorithms to perform relevant tasks and using that 
knowledge in non-standard ways to do a better job, more 
flexible thinkers have the capacity to connect procedures 
with the broader big ideas or concepts (e.g., equivalence). 

Try the examples given in Figure 4 on your own (or in the 
classroom) and check how many solutions you create, how 

efficient the solutions are, and what connections you make. 
It is my assumption that your (or your students’) solutions 
contain rich information relating to the understanding of 
flexibility with regard to mathematical connections. This 
outcome suggests to us that there is value in considering 
making mathematical connections as one of the indications 
of flexibility in doing mathematics. 

 
Final remarks 
This reflection is by no means exhaustive. Its main purpose 
is to contribute to the development of the current conceptu-
alisation of flexibility. Specifically, it makes evident that the 
two properties in Star and Seifert’s operational definition 
need to be extended. I propose incorporating an important 
quality of flexibility, making connections, which is funda-
mental for understanding mathematical concepts. I believe 
that this extension will allow a better analysis of flexibility 
in research and will contribute to teaching and learning, 
especially given that making connections is frequently used 
by mathematics teachers during their teaching. 

This reflection opens potential routes to study the issue 
further. First, studying whether and how making connections 
is a property of flexibility may provide a more profound way 
to define and analyse flexibility in transformational activi-
ties and may also help to foster the use of mathematical 
connections in teaching. Second, it is important to fine-tune 
this new property into more specific types of mathematical 
connections in transformational activities. Importantly, it is 
seen that, as Ionescu (2012) indicates, a number of variables 
play a role in flexibility. As well as the ability to make math-
ematical connections, knowledge in the relevant content 
domain (De Gamboa et al., 2020; Zazkis & Mamolo, 2011) 
may influence flexibility, or this knowledge may impact 
both on the ability to make connections and on flexibility. 
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Figure 2. Multiple solutions to the equation 0.3a + 0.2 = 1.1. Figure 3. Multiple solutions to the second equation.

Figure 4. Additional examples (from Star and Seifert, 2006, 
p. 286).
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The complex relationships among these three variables 
needs further research. Finally, I believe that these types of 
future reflections or investigations would expand the under-
standing of the concept and properties of flexibility in 
performing mathematical tasks, as this communication only 
focuses on a small number of examples. 
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Quadratic equations without a 
quadratic formula  

ISAAC ELISHAKOFF, J.N. REDDY 

One can safely say that the quadratic equations are not 
overly popular. The US talk-show personality Stephen Col-
bert describes them as “an infernal salad of numbers, letters, 
and symbols” (2007, p. 120). Given this, any simplification 
in methods of solving quadratic equations is a step in the 
right direction. One such simplification was offered by Sav-
age (1989), but it remained largely unnoticed until Po-Shen 
Loh (2019) developed it, apparently independently, some 30 
years later. As we will show later, it may be much older.    

Students are usually taught to find the roots x1 and x2 of a 
general quadratic equation  

using the standard formula 

Before learning the formula, students often learn to factor 
equations (usually with a = 1) by looking for two numbers 

whose sum is –b and whose product is c. In general, the sum 
of the roots is 

and the product is 

These formulae are named after François Viète (1540-1603), 
who may have been the first to discover them. They are cen-
tral to the method described by Savage and Loh. 
 
Illustration of the Savage/Loh method 
Let us use the method to solve a quadratic equation given by 
Muḥammad Ibn-Mūsā al-Khwārizmī: 

We can easily calculate the sum of the roots: 

and the product: 

The key point in the Savage/Loh approach is the observa-
tion that since sum of the roots equals –10, then the average 
of the roots is –10/2 = –5. The roots differ from this average 
by some value z.   

Using Viète’s product formulae we obtain 

This leads us to  

In other words, z2 equals 25 + 39 = 64. Thus, z equals either 
8 or –8. Substituting either of these values into the equations 
in (8) gives the two roots 3 and –13. 
 
A non-standard example 
Consider this unusual quadratic equation (Gashkov, 2015): 

Gashkov’s solution depends on a hint, that one of the roots 
equals x1 = 33 333 333. Using the quadratic formula requires 
a calculator that can handle 16 digit inputs, within the capac-
ity of smartphones, but still impossibly large for many 
calculators allowed for use in schools. Using the Savage/ 
Loh method it can be solved without Gashkov’s hint, and 
(with some effort) without a calculator. 

As a = 1 and b = 1, the sum of the roots is –1 and the aver-
age is –0.5. This gives the two equations   

39

FLM 41(2) - July 2021.qxp_FLM  2021-05-29  12:25 PM  Page 39



The product c/a is simply the number on the right side of 
Equation 11, which picks up a negative sign when the equa-
tion is put into standard form.    

Combining Equations 12 and 13, we have 

or  

Hence z2 = 1 111 111 122 222 222.25. Taking the square root 
(which could even be done by hand if necessary) yields 
z = 33 333 333.5. Substituting this into Equation 12 gives 
correct values of the roots.  
 
Benjamin’s example 
Benjamin (2015) states, “for the equation x2 + 9x + 13 = 0 
our best option is to use the quadratic formula” (p. 39). 
Using it, Benjamin arrives at the roots  

Benjamin goes on to claim, “There are a few formulae that 
you need to memorize in mathematics, and the quadratic for-
mula is certainly one of them” (p. 39). Next we will show 
that the Savage/Loh method makes it unnecessary to remem-
ber the quadratic formula.  

Because x1 + x2 = –9, the average of the two roots is  
(x1 + x2)/2 = –4.5. This gives us two equations for the roots 
in terms of the average and some value z: 

The product of the roots is 

so, 

and  

Hence, x1 = –4.5 + √7.25 and x2 = –4.5 – √7.25. The result 
coincides with Benjamin’s using the quadratic formula, as it 
should be. While it is useful to remember the quadratic for-
mula, its memorization is by no means necessary. 
 
Einarsson’s Example 
Einarsson (2005) discusses the quadratic equation  

He notes, “Four significant figure arithmetic when using the 
standard formula gives the roots x1 = 62.53, and x2 = 0.03125. 
The correct solution is x1 = 62.55 and x2 = 0.0125. We can 
see that in using the standard formula to compute the smaller 
root we have suffered from cancellation, since 4√(b2 − 4ac)

is close to (−b)” (p. 57). Obviously, direct use of the qua-
dratic formula can result in an inaccurate solution. 

Let us now see what we obtain using the Savage/Loh 
approach. The sum of the roots is 

So the average is 31.28125. The two roots are  

The product is 

Combining Equations 23 and 24 gives us 

So 

From this we can calculate z2  

and hence z = 31.26875. This gives us the exact solution of 
the roots, x1 = 62.55 and x2 = 0.0125. We have seen that this 
way of solving the quadratic equation avoids the numerical 
errors that come with using the quadratic formula. 
 
Priority 
Consider now the question of priority. It appears that method 
described by Savage and Loh was known earlier. Flusser 
(1981) describes a problem from the book Arithmetica by 
the third century mathematician Diophantus of Alexandria, 
“Find two numbers such that their sum is 20 and the sum of 
their squares is 208” (p. 389). Diophantus starts by thinking 
of the two numbers being (in modern notation) 10 + z and  
10 – z. Note that 10 is the average of the numbers. This is 
precisely what we have done above to solve quadratic equa-
tions. Because the sum of their squares is 208 one can write 
(again we have modernized the notation) 

from which Diophantus finds z = 2, and so the sought num-
bers are 8 and 12. While this is not exactly the Savage/Loh 
method, it is closely related to it and relies on the same key 
insight. 

A second example belongs to the Florentine mathemati-
cian Antonio de’Mazzinghi (1353–1383). De’Mazzinghi 
posed a problem similar to the one solved by Diophantus,  

Find two numbers such that multiplying the one into 
the other makes 6 and their squares are 13, that is 
adding together the squares of each of them we obtain 
13. We ask [what] are the numbers. (Katz & Parshal, 
2014, pp. 198–199) 
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De’Mazzinghi suggested to let “the first number be one cosa 
minus the root of some quantità [and] the other be one cosa 
plus root of some quantità” (Katz & Parshal, p. 265). Franci 
(1988) notes “In solving many problems Antonio uses two 
unknowns, one called cosa and the other quantità. As far as 
I know, Antonio is the first algebraist to use two unknowns” 
(p. 246). 
In modern notation, de’Mazzinghi began with  

He then substituted for s and t  

which is not very different from the substitution made by 
Diophantus of Alexandria or by Savage and Loh. Substitut-
ing these into Equation 30 he obtained 

Isolating z from this equation gave him 

Substituting this back into the equations in 31, de’Mazzinghi 
obtained: 

and 

Putting these values back into Equation 29 gave de’Mazz-
inghi  

with 

Finally,  

Because of these historical precedents it appears justified to 
refer to this method of solving quadratic equations as the 
Diophantus/Savage/Loh method. 
 
Reflections on learning 
Using the Diophantus/Savage/Loh method, we think that 
even Stephen Colbert could solve quadratic equations with-
out using the quadratic formula. In fact, the quadratic 
formula is not absolutely needed. Students can apply this 
conceptual approach to solving problems, and the historical 
links allow them to delve more deeply into how it functions, 
rather than simply memorizing a formula. As Pimm (1983) 
puts it 

Surely a teacher’s role is to help clarify, and not hide, 
how a piece of work was done. Yet in published mathe-

matics the methods of work are entirely absent and too 
smooth a path is given. If we never have to struggle 
with an idea or problem, we feel useless and outraged 
in the face of a real problem, one outside the narrow 
confines of what we have seen done. (p. 14) 

There was a time when having a formula that could solve 
any equation of a certain type was an essential part of the 
knowledge of any user of mathematics. Now, of course, we 
have software that can solve any equation expressed sym-
bolically. What is needed is insight into how to think 
logically through a problem, applying basic principles as 
needed. 
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A discussion with two five-year-
old girls about similarities and 
dissimilarities in two paintings 

TIMO TOSSAVAINEN, FRANÇOISE DUBOIS 

Some time ago, we ran across a study by Blanton et al. 
(2018) on six-year-old American students’ understanding of 
the equal sign. They reported on the operational understand-
ing of this symbol which had developed prior to formal 
instruction. This led us to wonder how children might attend 
to various relations in everyday life. We know that some 
children have a spontaneous tendency to focus on quantita-
tive properties of their environment (e.g., Hannula, Lepola 
& Lehtinen, 2010). So, we designed an experiment where 
five-year-old children explored and discussed two paintings 
(Figures 1 & 2). The aim of our experiment was to explore 
how children relate different elements in the paintings to one 
another using the concepts of similarity and dissimilarity. 

Similarity and other equivalence relations are not self-evi-
dent notions for young learners. According to Mazur (2008), 
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a source for the challenge is that the ‘same’ object can be 
presented in different ways. Perceiving the sameness 
requires a more advanced underlying structure. One can 
only wonder what kind of mental processes it takes to equate 
two objects in the real world when none of them are exactly 
identical in all details. Nevertheless, research in children’s 
perception and understanding of similarities and dissimilar-
ities has shown that already six-year-old children can 
successfully perceive even small differences and categorise 
similarities among facial expressions. 

 
The experiment  
The five-year-old girls who participated in the experiment 
are from a Swedish kindergarten where they have art class 
twice a week. The number of students in the whole class is 
21. These two girls were selected among four pairs that 
volunteered to participate. The reason for selecting just 
these girls was that they were more talkative than their 
peers. 

The discussion with the girls was conducted as a semi-
structured interview. The interviewer did not ask if any 
specific details were similar or dissimilar to something else, 
leaving all relations to be discovered by the children. In 
addition to explaining their findings verbally, the girls were 
encouraged to draw or in some other way to visually express 
how they experienced similarities and dissimilarities. The 
discussion was video-recorded. 

 
 

Our findings 
It will not surprise anyone who has worked with young chil-
dren that the girls were able to point out more than ten pairs 
of elements in the paintings that are dissimilar with respect 
to some property. Among their responses, we found three 
different types of dissimilarities. 

First, they picked up examples of single asymmetric rela-
tions such as “people [pointing, moving from one painting to 
the other] no people” and “I see also another thing: fan or 
whatever it is [pointing to the projector lens shown in one of 
the paintings] is not within in that picture [pointing to the 

other painting]”. Second, one of the girls noticed that 
“[pointing to one of the paintings] eyes [moving to the 
other] no eyes” and continued immediately after drawing 
two eyes on her paper “and I notice another difference: an 
eye without glasses and an eye with glasses [pointing to two 
eyes in the same picture]”. Here she combines two asym-
metric relations at different levels: a relation in the set of 
eyes in one painting and concerning wearing glasses, and a 
relation in the set of the paintings and concerning the pres-
ence of eyes in the paintings. 

Third, a little later, the same girl had the following discus-
sion with the teacher. 

Girl I see another thing in that painting. One 
[pointing to a man in one of the paint-
ings] is holding his mouth sadly and one 
[pointing to another person in the same 
painting] is holding [it] up. 

Teacher One? 

Girl One holds down. 

Teacher A mouth down like a sad mouth? 

Girl hm [agreeing, pause] and one up like 
excited. 

She combines a relation in the mouth positions of a set of 
people in one of the paintings and a more abstract relation 
which associates differences in mouth positions to differ-
ences in feelings. A transitive property in this reasoning 
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becomes more explicit when we summarise it as follows: 
Two people have different mouth positions. Different mouth 
positions indicate different feelings. These two people have 
different feelings. 

The girls were also able to point out several pairs of things 
that are equal to one another with respect to some property. 
Their findings concerned, e.g., the use of the same colour in 
both paintings: “[pointing an area in one of the painting] 
Blue [moving to the other painting] blue” and “Red chairs 
[moving to the other painting] red roof”. The latter example 
shows that the objects themselves can be different, the con-
necting element is the colour. The girls also focused on 
finding similar things within one painting. Then they 
noticed, for example, people doing the same thing: “kissing 
[moving to the other painting] and kissing [pointing to cou-
ples in both paintings]”. 

Since the class had discussed the notion of patterns with 
the teacher earlier that year, their teacher started the follow-
ing discussion. 

Teacher Say, do you see any patterns on those? Do 
you know what a pattern is? 

Girl A Yes. 

Teacher What is a pattern? 

Girl A A pattern is, when it consists of different 
shapes and colours. 

Teacher Hm, well described. So, do you see, is 
there a pattern? 

Girl A Let me think about it [pause] Yes. I think, 
I do [Becomes silent] 

Girl B [Rises and goes to one of the paintings 
and points to the hair of a woman pic-
tured] One [pause] one like a stitch. 

Teacher [You mean] that there is a stripe in the 
hairdo? 

Girl B Hm [agreeing]. 

Girl A [Comes to the painting and points to 
other people in it] And in the all hairdos 
here. 

Girl B And even here [points to the forehead of 
a third person in the painting]. 

In this episode, B shows a sense of both similarity and 
symmetry because the line pattern is repeated both as it is 
and mirror-symmetrically. When A joins the discussion 
again, she points to a pattern that is quite similar to the pre-
vious example but not exactly the same. The same applies to 
the pattern that B shows on the face of the third person. 
What is interesting here is that this pattern is not related any-
more to hair but to a forehead, and its shape has also clearly 
changed. One may think that the pattern on the second face 
mediates the similarity from the first example to the third 
one. In this sense, it is a trace of transitivity. 

Another example of transitive reasoning came up at the 
end of session. 

Teacher When do you think that this is happening 
[referring to the painting where people 
are in the cinema]. Is it in the morning or 
[pause] at lunch time? When does this 
happen? 

Girl Eeh [pause] in [pause] in the evening! 

Teacher Why do you say so? 

Girl You know [pause] my mother has done a 
thing [pause] and my father [pause] 
when I was with my grandma and 
grandpa [pause] 

Teacher Hm? 

Girl [pause] then they were at the cinema and 
it was an evening. 

Teacher Hm! [showing understanding]. 

When teacher asked where the house in the other painting 
might be, the girls came up with the following ideas. 

Girl A I know, it is on a street! 

Girl B [Starting at the same time and showing a 
great enthusiasm] Eeh [pauses while lis-
tening to the other girl] you, you can 
think that [pause] that there, inside, there 
are all these persons! 

Teacher Yes, that the cinema is there! [meaning 
the house in the other painting] 

Girl B Hm [Agreeing] 

Teacher And here we have the outside [view] of 
the cinema and, in the other, the others in 
the cinema. 

In other words, the girls construct a symmetry between the 
paintings that is conveyed by the themes of the paintings. 
 
Discussion 
In the domain of two paintings, there are only two alterna-
tives for an asymmetric relation; the girls discovered both of 
them. The double relations discussed above could have other 
domains than those we mentioned. In the second example, a 
possible domain is the set of all eyes in the painting, not only 
the eyes that were picked up during the conversation. How-
ever, extending the domain does not affect the asymmetry 
property of the relations expressed by the girls. 

A critical reader may question whether the girls really 
combined two relations in order to speak about the differ-
ence between the paintings or only noted another 
dissimilarity of the first type within one of the paintings. We 
cannot completely exclude this possibility, yet there are two 
reasons to believe that she simultaneously paid attention to 
both differences. Namely, the very short and meditative tran-
sition from the one point of view to the other and the fact 
that the girl was well aware that we now discuss the differ-
ence between the paintings. Further, the same girl definitely 
combined two different comparisons simultaneously in the 
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double relation related to the third example. In this episode, 
it was clear to every participant that the discussion con-
cerned only one of the paintings. 

The examples expressed by the girls also contain many 
symmetries and transitivities, some of them quite advanced 
and abstract. The contextual symmetry between the paint-
ings—an indoor picture of people in the cinema and the 
street view of the house where the cinema is—is especially 
interesting. There is an element in the latter painting repre-
senting the house that may explain this symmetry. The girl 
who came up with this symmetry also pointed to an upper 
part of the painting and said that the colour of the sky is 
same as it is in the evening. By combining this with her 
memory of her parents going to the cinema in an evening, 
she seems to have constructed the evening=evening similar-
ity between the paintings. This may have led her to think that 
also the cinema can be a theme that relates the paintings to 
one another. 

Interestingly, the girls did not mention any examples 
based on showing that an object is similar to itself. Actually, 
there are studies showing that reflexivity is an obscure 
notion for learners at any age. Blanton et al. (2018) noticed 
that some children relate the equal sign automatically to per-
forming an arithmetic operation, i.e., they interpret 5 = 5 as 
5 + 5 and not as a relation. Similarly, Tossavainen, Attorps, 
and Väisänen (2011) noticed that many student teachers 
claim that x = x is not an equation because “it is weird to 
relate a variable to itself in this way”. In their data, some stu-
dent teachers explicitly related the equal sign to a command 
to solve an equation. They claimed that this expression can-
not be an equation because it would “collapse” if one tried to 
solve it. 

Van den Heuvel-Panhuizen and van den Boogaard (2008) 
studied the cognitive engagement occurring when a non-
mathematical picture book is read to young children. They 
noticed that the children, finding themselves in an inspiring 
environment with elements that can be mathematized, spon-
taneously came up with mathematics-related thinking. Our 
experiment clearly supports their conclusion in the context 
of visual arts. Already five-year-olds can have versatile men-
tal templates for advanced discussions on mathematical 
relations. An especially interesting observation revealed by 
the above quotes is that the girls developed their mathemat-
ical thoughts both from the paintings and their interaction 
related to the artworks. This reflects what we also see in the 
formal contexts for learning mathematics. Both a personal 
engagement with mathematical text and social interaction 
are needed for developing deep understanding about a new 
mathematical notion. 
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Readers interested in looking at paintings 
mathematically may want to read ‘Looking 
at a painting with a mathematical eye’ by 
Marion Walter (1928–2021), in issue 21(2). 
In that article she explores the painting 
‘Arithmetic composition’ by Theo van Does-
burg (See Figure).  
 
Marion had a lifelong interest in connections 
between mathematics and art, was a member 
of the FLM Advisory Board from 1980 to 
1997 and contributed much to the visual 
‘look’ of FLM in its first seventeen years.
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