
Philosophy Enters the Mathematics Classroom 
PAUL WOLFSON 

I Joseph Agassi's recent article, "On Mathematics Educa­
tion: The Lakatosian Revolution'', which appeared in this 
joumal [I], is a call to arms It asks like-minded teachers to 
initiate radical change in our educational system Since 
others, too, have been impressed by Lakatos's writings, 
there is some chance that Agassi will be heeded and a re­
form movement will be started. It is therefore worthwhile 
for us to examine the ideas of Lakatos from many points of 
view. 

What is clear hom even a casual reading of Ptoofs and 
Refutations, his book most known to mathematicians, is 
that Lakatos finds stultifying that system of mathematical 
exposition loosely based upon the formalist philosophy of 
mathematics Textbooks from this mold, he tells us, rigidly 
present a kind of fiction: the perfect, logically founded sys­
tem In fact, he goes on, systems like that do not exist (not 
interesting ones, anyway), but by perpetuating the myth, 
expositors cover up the active nature of real mathematics 
To see mathematics more fully, he concludes, we must view 
the subject historically 

As an example, Lakatos considers Rudin's Principles of 
Mathematical Analysis, first edition [23] This, says 
Lakatos [!7, p 145], "is one of the best textbooks within 
this ttadition", but inevitably, since it is written in the "au­
thoritmian deductivist style", it has weaknesses For exam­
ple, when Rudin introduces functions of bounded variation, 
we might well ask, "Why should we be interested in just 
this set of functions? The deductivist's answer is: 'Wait and 
see' " The answer comes later, in the theorem that such 
functions are Riemann-Stieltjes integrable But since the 
Riemann-Stieltjes integral is introduced in the same au­
thoritarian manner, "now we have got a theorem in which 
two mystical (sic) concepts, bounded variation and 
Riemann-integrability, occur. But two mysteries do not add 
up to understanding" [p 147] 

Many readers will go so far with Lakatos If he was ahead 
of his time in 1963 when he published the first portions of 
Proofs and Refutations, by now the mathematical commun­
ity has caught up with him somewhat Dissatisfaction with a 
formalist philosophy of mathematics seems rather wide­
spread [7, 25, 26], and the expositions it inspired no longer 
hold a monopoly In fact, more attention is being given to 
history, even to the publishing of serious volumes [2, 3, 
13] (See Note I) 

A respect for history is nothing new, however. Otto 
Toeplitz's beautiful book, The Calculus. A Genetic Ap­
proach [27], persuasively illustrates the theory that we will 
understand a mathematical idea better for knowing its 
origins and development. George Polya reinforced this 
same theory with a metaphor ("the biogenetic law") [22] 
before writing the books on heuristic which inspired 
Lakatos [20, 21] 

The imperfect nature of mathematics, too, had been dis-

cussed before Lakatos. In his Remarks on the Foundation of 
Mathematics [30], Ludwig Wittgenstein wmte [p. !71 e]: 

What does mathematics need a foundation for? It no 
more needs one, I believe, than propositions about 
physical o~jects - or about sense impressions, need 
ananalysis . 
The mathematical problems of what is called founda­
tions are no more the fOundations of mathematics for 
us then the painted rock is the support of a painted 
tower 

Lakatos echoed this conclusion in such statements as these: 

By each "revolution of Iigour" proof'analysis pene­
trated deeper into the proofs down to the foundational 
layer of "familiar background knowledge". . where 
crystal-clear intuition, the rigour of proof, reigned su­
preme and criticism was banned Thus, different levels 
of rigour differ only about where they draw the line 
between the rig our of pr oaf-analysis and the rig our of 
proof; i e .. about where aitidsm should stop and jus­
tification ;.hould start "Certainty is never achieved": 
''foundations'' are never found- but the ''cunning of 
reason'' tmns each increase in rigour into an increase 
in content, in the scope of mathematics [ !7, p. 56] 

Mathematicians themselves have been aware of impetfec­
tions in Iigour [4, 19] Just recently, I. Grattan-Guinness [6] 
has criticized ow· mathematical curriculum and textbooks 
for conveying a false sense of the absoluteness of mathema­
tics, and recommends histmy as an antidote His article is 
worth quoting at length [p 430] 

Whether explicitly or implicitly, teachers usually be­
lieve in the solidity of foundations and the correctness 
of the knowledge built upon them For centuries this 
spirit was represented by a dogmatic belief in Eu­
clidean geometry. There one found the apotheosis of 
mathematics, the paradigm of the Immutable Fact, the 
tree of secure knowledge, the cathedral of rigom to 
which all other parishes must look for inspiration and 
enlightrnent 

Now one of the principal claims of the New 
Mathematics is that it has swept this type of thinking 
away Nobody believes in the primacy of geometry any 
more 

My own view is that the old Euclideanism has been 
replaced by a new one of a different type Instead of 
the Immutable Fact, we have the Immutable Structure; 
the tr·ee of secure knowledge has become the tower of 
basic artifacts; the church of rigour has been taken over 
by a Corporation of Fundamental Concepts, whose 
products we all need in order to think 
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Most mathematicians who are occupied with research seem 
to share this attitude with the (majority of) mathematics 
teachers, and as Reuben Hersh has noted, that undermines 
their confidence. '' We can see the reason for the 'work­
ing mathematician's' uneasy oscillation between formalism 
and Platonism Our inherited and unexamined philosophical 
dogma is that mathematical truth should possess absolute 
certainty" [10, p .. 38] Hersh goes on to argue that this 
unexamined dogma, and mathematical philosophy in gen­
eral, affects all mathematical activity. Since he is an estab­
lished mathematician speaking to his colleages, it is espe­
cially valuable for us to listen in 

Many practical problems and impasses confronting 
mathematics today have philosophical aspects The 
dearth of well-founded philosophical discourse on 
mathematics has observable harmful consequences, in 
teaching, in research, and in the practical affairs of our 
organizations 

Most mathematicians live with two cont:Iadictory 
views on the nature and meaning of their work Is it 
credible that this tension has no effect on the self­
confidence and self-esteem of people who are sup­
posed above all things to hate contradiction? 

It would be surprising if this had no practical 
consequences 

Let us pause to consider two possible examples of 
such practical consequences. The last half century or 
so has seen the rise of formalism as the most frequently 
advocated point of view in mathematical philosophy 
In this same period, the dominant style of exposition in 
mathematical journals, and even in texts and treatises, 
has been to insist on precise details of definitions and 
proofs, but to exclude or minimize discussion of why a 
problem is interesting, or why a particular method of 
proof is used 

Another example is the importation, during the 60's, 
of set-theoretic notation and axiomatics into the high 
school cuniculum This was not an inexplicable aber­
ration, as its critics sometimes seem to imagine. It was 
a predictable consequence of the philosophic doctrine 
that reduces all mathematics to axiom systems ex­
pressed in set-theoretic language 

The criticism of formalism in the high schools has 
been primarily on pedagogic grounds: "This is the 
wrong thing to teach, or the wrong way to teach" But 
all such arguments ar·e inconclusive if they leave un­
questioned the dogma that real mathematics is pre­
cisely formal derivations from formally stated 
axioms. In the end, the critique of formalism can be 
successful only through the development of an alterna­
tive: a more convincing, more satisfactory philosophi­
cal account of the meaning and nature of mathematics 

II Such an account is what Lakatos t:Iies to give, and in 
this way he goes beyond some others who also criticized the 
existing philosophies of mathematics 1b understand his 
ideas, we shall begin with a brief review of Proof and 
Refutations. This work consists largely of a discussion of 
Euler's conjecture that for any polyhedron,F + V = E+ 2, 
where F equals the number of faces, V equals the number of 

vertices, and E equals the number of edges of the polyhed­
ron Lakatos's discussion is in the form of a dialogue 1his 
dramatizes his idea that mathematics is a dialectical process 
in which several steps may be distinguished 
(Figure 1). When a conjecture has gone through the 
five stages illustrated, it has closed a loop (or more 
appropriately, rotated about a spiral); the revised conjecture 
awaits a new proof. 

Stax< 1 in Proof< and Refutoi!0/!1' 

I Forming a primitive ~onjecturc 
2 Devising a proof 
3 Finding o;·ounterexamples 
4 Analyzing the proof 

5 Formulating a new conjecture 

Lwmpi< 'jiom rlu lu>Wn of Eulc1 '' Ollj<'<'l!lr< 

F + V = t -,- 2 for all polyhedra 
Cauchy s proof by flauening 
The cube within a cube 
Discovering the hidden lemma that 
the polyhedron can be flattened 
after removing a face 
All< om·n polyhe·dra ;ati,·fy 
F+V=E+2 

Figure 1 

Of course, this scheme must not be taken too literally 
For one thing, the historical sequence (or one's own se­
quence of steps in solving a problem) may vary Again, 
more than one proof may be attempted, or more than one 
new conjecture suggested Thus, there is an important ele­
ment of choice and judgement (see Note 2); one can make 
better or worse moves at each stage in the game. There is, 
then, at least an art of heuristic (in the sense of Polya) and 
therefore a more active role for the resear·cher than merely 
to await inspiration. Correspondingly, the learner and the 
teacher both have more active roles. 

This is where Agassi's reflections on "the lakatosian 
Revolution" begin Now Agassi makes a very bold asser­
tion about Lakatos's view of mathematics: he says that 
Lakatos rejects both the view that mathematics is knowl­
edge of the truths of nature, and the principal alternative, 
that mathematics is merely a convention 

When we come to any branch of learning, but particu­
larly to logic and mathematics, the dichotomy of na­
ture and convention is so dreadful because it cuts out 
pmpose: nature leaves no room for my desires and 
convention makes them arbitrary. This is why in logic 
and in mathematics most philosophers are either 
naturalists, logicists, ideal language theorists, etc , or 
fmmalists who deem any axiom system as good as any 
other. Both ar·e in error: systems ar·e man-made but not 
arbitrary; they are designed to answer certain de­
siderata, and these desiderata are themselves subject to 
debate [ 1, p 29] 

That debate and the resulting decisions should themselves 
be a most important part of education, Agassi believes 
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III From this quotation we can see that Agassi, like 
Lakatos, was writing a polemic The better the polemicist, 
the more we should be on our guard So let us think criti­
cally before we join the revolution 

Several problems present themselves when we examine 
Lakatos's writings as philosophical accounts of mathema­
tics. A first criticism of several of his writings is that they 
are histmically inaccurate For example, Grattan-Guinness 
[5, p. 319] criticizes Lakatos's account [15] of the Cauchy 
conjecture (that the sum of a convergent series of continu­
ous functions is continuous), remarking that "Lakatos's 
command of the histmy of this theorem is inadequate '' 

Lakatos's apparently cavalier treatment of facts may have 
been encouraged by some systematic biases One is his 
leaning toward so-called "Whig History", "reading the 
past in terms of the present to which it led" [3, p 328] One 
example of this is Lakatos's use of Robinson's infinitesi­
mals to explain Cauchy's conjecture 

In addition to this, as we have seen, Lakatos is partial to a 
dialectical view of mathematical development The 
dialogue form of the bulk of Proofs and Refutations helps to 
emphasize this view, but it leaves little place for accidental 
influences What is internal in the histmy of mathematics 
may nevertheless be external to some particular mathemati­
cal problem For example, another reviewer criticizes 
Lakatos's account of the concept of uniform convergence 
(again in Proofs and Refutations): 

UnfOrtunately, the rational reconstmction of histmy is 
much less convincing here than in the case of the Euler 
conjecture There are two related reasons for the dif­
ference Lakatos has tried to detach the problem of 
convergence from the cluster of issues addressed in 
early 19th century analysis, and the development of 
ideas on these other issues is relevant to the elaboration 
of concepts of convergence Moreover, because 
Lakatos has not provided an account of how mathemat­
ical principles can be justified during the course of 
theoretical evolution, he is unable to explain the ra­
tionality of the process that led to the notion of uniform 
convergence [12: 782-783] 

If we are to introduce dialogues in our classrooms, then we 
must realize that they are artificial, not strictly representa­
tive of mathematical development In his article, Agassi 
remarks that motivation theoty "is an advocacy of lies" 
[p 30], but if the criticisms cited are valid, then Lakatos, 
too, systematically misrepresents the truth, and we should 
at least be wary of exposition based upon his theories and 
examples 

To these criticisms I must add the admission that it is 
difficult for me, at least, to find in Lakatos's writings a 
coherent position on the tension between truth and conven­
tion to which Agassi refers in the quotation above. There 
ar·e times when Lakatos seems to hold something like a 
Platonic notion of mathematical truth In other places, his 
view seems different. For example, in [18] Lakatos distin­
guishes three types of proof - preformal, formal, and 
post-formal. "Roughly, the first and third prove something 
about that sometimes clear and empirical, sometimes vague 
and "quasi-empirical" stuff, which is the real though rather 
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evasive subject of mathematics This smt of proof is always 
liable to some uncertainty on account of hitherto 
unthought-of possibilities. The second sort of mathematical 
proof is absolutely reliable; it is a pity that it is not quite 
certain - although it is approximately certain - what it is 
reliable about '' 

IV The criticisms listed above are intended to show where 
we in the mathematical community need to do more think­
ing They are not intended to suggest that we dismiss 
Lakatos's ideas We should try to avoid such dismissals 
Indeed, Lakatos himself is sometimes guilty of dismissing 
formalism and other traditional philosophies with scant 
acknowledgment of their positive features He says little, 
too, about the mathematical - as opposed to philosophical 
-reasons for the rise of the axiomatic method (see Note 3), 
and its natural and appropriate incmpmation in some expo­
sitions What we should reach for is a philosophy of 
mathematics which can find a place for this tradition and 
also for a coherent revision of Lakatos's ideas It seems that 
we may make a start on this by considering Lakatos's own 
later writings on the philosophy of science 

Instead of speaking of scientific theories, Lakatos de­
veloped the concept of a scientific research program, which 
is characterized by two parts: (I) its "negative heuristic," 
certain specific tenets taken as infallible, and (2) its "posi­
tive heuristic," a tentative model, that is, a view (subject to 
modification) of the nature of the subject matter which is 
under consideration 

The classical example of a successful resear·ch pro­
gramme is Newton's gravitational theory When it 
was first produced, it was submerged in an ocean of 
"anomalies" (or, if you wish, "counter examples"), 
and opposed by the observational theories supporting 
these anomalies But Newtonians tmned, with brilliant 
tenacity and ingenuity, one counter-instance after 
another into conuborating instances, primarily by 
overthrowing the miginal observational themies in the 
light of which this "contrary evidence"' was estab­
lished In the process they themselves produced new 
counter-examples which they again resolved [16, p 
133] 

Several aspects of a scientific resear·ch program may be 
inferred from this quotation. In the first place, a research 
program is just that - a program or plan, and therefore 
unfolding, dynamic, as opposed to the traditional view in 
which a theory (as usually presented in textbooks - see 
Note 4) is laid out, static Furthermore, the reference to 
counterexamples cmrectly suggests that a resear·ch program 
unfolds in a process similar to the proofs and refutations 
outlined above Thirdly, we note that the Newtonian pro­
gram resisted collapse even though it "was opposed by the 
observational themies supporting . anomalies '' This was 
due to the bolstering effect of indutable tenets: Newton· s 
three laws of dynamics and his law of gravitation These 
assertions fmmed the "hard core" of the program, as 
Lakatos called it, and it indicated what kinds of explana­
tions (e.g for the anomalies) were unacceptable to the pro­
gram Thus it fmmed a negative heuristic 



The hard core points us away from certain explanations; 
clearly it should be supplemented by a positive heuri;tic 
which tells us where we should look for explanations The 
positive heuristic takes the form of auxiliary hypotheses or 
of a model which is introduced to provide explanations, 
especially for anomalies As one hypothesis may not ex­
plain all known anomalies, the hypotheses ar·e allowed to be 
changed as needed In this way one can hope always to keep 
a lethal blow from being struck at the irrefutable hard core. 
Lakatos dubbed this second part of the program its ''protec­
tive belt", as we might have feared Figure 2 illustrates the 
development of the Newtonian research program 

The meaning and validity of the idea of a scientific re­
search program have been debated [see, for example, 5, pp 
320-321 and 24, pp 309-310], but at the very least it is 
suggestive As I shall indicate later, the idea of a scientific 
resear·ch program may profitably be taken into mathematics 
to solve some of the difficulties discussed eailier In order to 
see some value in the idea of a scientific research program, 
we must realize that it is more than just a model For exam­
ple Lakatos's account of the Newtonian program presents a 
list of progressively more sophisticated models of planetary 
motion In the first one, a point-like planet moves about a 
fixed point-like sun, and in this model, with Newton's laws, 
Kepler's laws of planetary motion can be derived 
However, the model itself contradicts Newton's third law, 
because the planet is not allowed to affect the sun Thus a 
second model, in which the planet and the sun move around 
a common center of gravity, is developed Here, we may 
argue that the original model was simply incmrect But at a 
later stage, point masses are replaced by massive balls. 
Lakatos accounted for this replacement in the following 
way [16, p 135]: "Infinite density was forbidden by an 
(inarticulated) touchstone of the theory, therefore planets 
have to be extended·' But this casual comment does no 
justice to the change What happened at this stage was that 
an idea wm articulated Elsewhere [18] Lakatos emphasized 
how impmtant and smprising such articulations could be 
Indeed, that is one of the themes of Proofs and Refutations, 
where the idea of a polyhedron, at first a naive one, is 
articulated with surprising, occasionally troubling, and deep 
consequences The situation was the same in our examples 
from the Newtonian program That it was possible to apply 

Th~ ~~wtonian res~arth program 
H-\111)( ORE: Newtons three law~ ot motmn aml hi> l~w ot grJ~itation 
I ~OJ f-_( IIV!o HfLI: 

Cfuutgm_~ mudd.1 

I Fixed point--like _,un and 
.'>ingle point--like planet 

2 Sun and planet movt· around 
common center of gravity 

' .'VI ore planet'>. but no 
interplanetary force~ 

4 Planet> arc massJVe ball< 

5 T'he rnas~.e-' are ;·pinning 

6 The ma~~e~ are b1.1lging 

Wfw/111<' <tpfwn 

Kepler·, law of elllpti~al 
motmn 
Remove' contradiction ot 
:-.Iewton \ third luw 

Removes impliL 11 pro~~ription 
of infinite densitie> 

Note that interactions among lcveralma;_,e_, arc 'till not ~ccounted ror in this s~·h~me 
of Lakatos That hegins with disetl~~iom of the clas~ical ··three .. bod;> problem 

Figure 2 

Newton's laws to extensive bodies was not at all obvious· 
Lakatos himself, on the next page of his account, remarked 
upon it as a cause of the twenty-year delay in publishing the 
Principia All of this suggests that it would be worthwhile 
to develop a suitably subtle and flexible form of con­
ventionalism in the philosophies of science and mathema­
tics 

V Let us see what a theory of mathematical research 
programs might look like If we can adapt this idea of 
Lakatos, we shall be able to give a fuller account of the 
nature of mathematics than was possible under the earlier 
philosophies We certainly should be able to offer guidance 
to historians of our subject The same insights might also 
help us to develop courses or even a cuuiculum that studies 
long sequences of great mathematical ideas [see 6 and 29] 
Lastly, the study of the history of mathematics has been 
justified by the adage "ontogeny recapitulates phylogeny"; 
therefore, an organization of historical facts into mathemat­
ical resear·ch programs should give implicit instruction in 
heuristic even as it inculcates su~ject matter. 

In two very interesting papers [9], Michael Hallett has 
discussed several episodes from the histmy of mathematics 
(especially the work of Cantor) from the point of view of 
mathematical resear·ch programs. He emphasizes the role of 
heuristics in ''binding series of related theories into 
programs". Moreover, his examples (from the work of 
Cantor, Lebesgue, and Poincare), make clear that he con­
ceives of the hem is tics as specific to the programs, not just 
general rules such as Polya formulated and Lakatos dis­
cussed in PToofs and Refutations This idea that hemistics 
ar·e specific to programs seems to me a major advance in 
Lakatos's later work Nevertheless, we shall not follow Hal­
lett here, but consider an alternative interpretation which is 
perhaps closer to Lakatos's own ideas about scientific re­
sear·ch programs. 

The positive hemistic of a program is probably to be 
found in the broad models of a problem ar·ea Lakatos him­
selfrefeued to one [17]: Fourier's primitive conjecture that 
every fUnction can be expanded in a Fomier series. Hallett 
[9, pp. 146-149] refers to several models, such as Cantor's 
program, by which ranges of variability were made into sets 
which were to be treated as finite wholes and enumerated 
against a fixed stock of (transfinite) ordinal numbers 
Again, Felix Klein's Erlangen program was to study a 
geometric system by studying its group 

We may be tempted, then, to complete our outline by 
identifying the negative heUiistic of a program with the set 
of axioms and theorems of the resulting theory, but this 
would be a mistake: the hard core should be not merely 
irrefutable, but essential Therefore, in an effort to clarify 
our notions of both negative and positive heuristic, let us 
consider one more example 

The early steps in the development of algebraic topology 
were motivated largely by analysis .. Mathematicians ob­
served that integrals of the same function over different 
paths often yielded equal values This led to the definition 
of a new equivalence relation among cmves: namely when 
two cUives are homologous. By 1870 Betti had introduced 
homology groups Poincare, in 1895, gave a precise defini-

25 



tion of the homology groups via simplicial complexes and 
cycles, thereby avoiding analytic methods and replacing 
them with algebraic or combinatmial ones This entailed 
triangulating the space to be studied Having done so, 
however, one would want to know that the constructions 
based on the triangulation were independent of the particu­
lar triangulation, i e were invariant, so that the results were 
topological properties of the space A more precise and 
specialized statement emerged: any two triangulations of a 
space have respective subdivisions that are isomorphic The 
central role of this conjecture in early work is reflected in 
the name given to it, hauptvermutung (fundamental conjec­
ture). Only recently this conjecture was disproved [Mazur 
and Milnor, 1961], but its use had been circumvented in 
1915 by J. W. Alexander's proof of the topological in­
variance of the homology groups The subject's develop­
ment into what we now recognize as algebraic topology led 
to more kinds of complexes and more general notions of 
homology and cohomology 

What seems essential to the subject is the existence of a 
module of chains (generalizing the simplicial chains which 
were created in triangulated spaces) with a boundary 
operator such that 8 2 = 0 Something like this then, seems 
to have been a negative hemistic, i.e , an irrefutable hard 
core For the hard core, however interpreted, must lie at the 
base of any explanation offered by the resear·ch program 
The early work of Poincar·e and others went far to explain 
both the facts about integrals motioned earlier and Euler's 
formula for polyhedra, by interpreting the hard core in 
terms of triangulations of spaces This interpretation, then, I 
take to be a positive heuristic, one which was modified by 
later developments, when polyhedra were no longer the 
exclusive reference spaces of algebraic topology 

VI Until now, philosophies and expositions of mathema­
tics have concentrated on what we would call the negative 
heuristic, which is by nature static (since irrefutable) The 
dynamic quality of mathematics energes only with an un­
derstanding of the role of the positive heuristic Again, we 
quote Grattan-Guinness [6]: "The distinction between 
"mathematics" and "history of mathematics" is false in 
principle: there are only mathematical problems and they 
have a history " I hope that my remarks help to show how 
we may use a 1icher philosophy of mathematics to incorpo­
rate history in our expositions 

Notes 
When he received the Steele Prize for mathematical exposition last 
year, Edwards paid tribute to foeplitz s book [27] and spoke with 
approval of a growing interest in history and philosophy within the 
mathematical community 

2 Cf Hersh [10, p 33] on the criteria we use fOr evaluating mathema­
tics: "To make these criteria explicit, to bring them in to the open for 
discussion, challenge, and controversy, would be one important 
philosophical activity for mathematicians 

3 See, for example, [11] and [28]. 
4 Cf Kuhn [14 pp 135-136]: "Textbooks record the stable outcome 
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of past revolutions Textbooks thus begin by truncating the 
scientist s sense of his discipline· s history and then proceed to supply a 
substitute for what they have eliminated Characteristically, textbooks 
of science contain just a bit of history 
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