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Theoretical frameworks in mathematics education may dif-
fer in aspects related to their objects of study, aims pursued,
kinds of results obtained, contexts in which they can be
applied, research questions that they might help answering,
among others. Gascon and Nicolas (2017) question some of
these aspects, in relation to the specific ends of a theory
which can consist in understanding a didactic phenomenon
or in a teaching related aim, possibly linked to normativity.
In particular, they would like to bring to the fore and interro-
gate the undisputed or implicit assumptions of these
approaches with the purpose of initiating a dialogue among
different perspectives; they invite the community to partici-
pate in this discussion. The present paper is written in
response to that call, however, it is not completely tied to it.
It aims to present how research conducted with APOS The-
ory might be of help to instructors by focusing on some
relationships between student understanding and teaching.

APOS Theory

APOS Theory is a constructivist framework based on
Piaget’s genetic epistemology. Research from this perspec-
tive concentrates mainly on the construction of
mathematical knowledge and has focused particularly on
mathematics learning at university level. This kind of inves-
tigation can have a research end consisting in identifying the
mental constructions needed by students as well as an edu-
cational end that takes into account specific learning
contexts. In order to reach these ends from a scientific per-
spective, a key component of the theory is the design of
detailed models using the constructs of the theory, called
genetic decompositions, that can be taken initially as
hypotheses about how individuals learn specific mathemati-
cal concepts, based on results from literature, historical
knowledge or the experience of researchers as teachers. As
with other hypothetical descriptions, they need to be tested
by experimental research and refined or validated in terms
of the results of those studies.

The basic assumptions and objectives of APOS Theory
are in line with the limitations that it defines as its domain
and object of study. APOS Theory aims at describing, with
its detailed “microscopic” approach, the elements of the
construction of mathematical knowledge from a cognitive
viewpoint. This does not imply an opposition to other theo-
retical perspectives that address issues in mathematics
education from a different and maybe broader perspective.
At some point in time it might be possible to contemplate
whether these points of view could play a complementary
role in providing a deeper understanding of phenomena
related to the learning and teaching of mathematics (see, for
example, Bosch, Gascon & Trigueros, 2017).

Mental structures and mechanisms
APOS Theory was founded by Dubinsky (1984; 1991) and
developed by RUMEC (Research in Undergraduate Mathe-
matics Education Community) (Asiala er al, 1996).
According to this framework learning occurs when an indi-
vidual constructs mental structures through mental
mechanisms. The most basic structure is an Action, applied
to previously constructed mental objects and directed by
external stimuli. When an Action is repeated and reflected
upon, it becomes a Process through the mental mechanism
of interiorization. Processes in turn are encapsulated into
Objects so that Actions can be applied to them. A Schema is
a coherent collection of structures connected to each other.
We should emphasize that although there might be a cer-
tain relationship between student success and the stages of
mathematical knowledge construction according to APOS
Theory, there is no strict implication between the two.
Sometimes misunderstandings occur regarding the meaning
of mental constructions. For example, we have heard people
say that if a student cannot perform a task he or she “is at the
Action level”. However, firstly, Actions, Processes and
Objects are not referred to as levels in this theory; they are
structures or constructions and represent stages in the learn-
ing model which are not necessarily constructed as a linear
progression. Secondly, an individual with an Action concep-
tion can perform tasks that require this structure; as building
blocks, Actions are an important part of the whole construc-
tion process. In that sense an Action conception is not
associated to the notion of failure, in the same way that a
Process or Object conception does not necessarily imply
success when dealing with a certain task.

APOS Theory and its methodology

Research performed from an APOS Theory perspective
ideally involves three components. Theoretical analysis,
which consists in the description (genetic decomposition) of
mental structures and mechanisms that might be viable in
the construction of a mathematical concept; design and
implementation of instructional strategies that are informed
by the theoretical analysis; and collection and analysis of
data where a comparison is made with the constructions
hypothesized in the genetic decomposition which in turn is
revised and can be modified if necessary. These three com-
ponents form a cycle that is repeated until the genetic
decomposition and empirical evidence agree; there is also
the possibility that a genetic decomposition is refuted. The
three components are very closely related. The result of the
epistemological work is a cognitive model explaining a
possible construction of a certain piece of knowledge. Peda-
gogical work gives rise to the design of activities,
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mathematical situations and problems as well as didactical
strategies such as using collaborative group work before
concepts are formally introduced. Empirical work leads to
the identification of the inferred mental structures evidenced
by the individuals participating in the research study. In
summary, from an APOS Theory perspective, research,
teaching and theory development are closely tied to each
other. In particular, the application of APOS Theory in
design and implementation of instruction, informed by
research results, is an explicit interest as well as objective of
this theoretical perspective. In this implementation, “The
role of the instructor is to identify the mental structures that
might be needed in learning the concept and to design activ-
ities that help students make the proposed mental
constructions.” (Arnon et al., 2014, p. 179). In that sense,
there is no strict separation between an instructor and a
researcher; they share a common goal and participate in
activities that would facilitate reaching it.

Each component in the methodological cycle has a
method associated with it. The theoretical analysis that leads
to a genetic decomposition is based on several factors cho-
sen among aspects such as the researchers’ experience,
observation of classes, examination of textbooks and review
of literature. For the pedagogical component the ACE
(Activities—Class Discussion—Exercises) cycle is
employed with its variations, where the design of each math-
ematical situation is informed by the genetic decomposition.
For the analysis component, each researcher goes through
the data and puts down related observations following a pro-
tocol, after which discussion takes place until differences in
interpretation are resolved by coming to a mutual agreement.

APOS Theory and teaching

Gascon and Nicolas (2017) question how different theoreti-
cal approaches formulate, implicitly or explicitly, their
teaching goals (or whether they have goals related to teach-
ing at all). Another way to investigate the relationship
between theories and teaching might be starting from the
teaching end and asking what goals teaching pursues. The
answer depends on the context in which didactical activities
are immersed. One objective might be, as Pegg and Tall
(2005) state, “to stimulate cognitive development in stu-
dents” (p. 191). The achievement of this goal involves
planning in terms of choosing appropriate activities and
strategies, deciding in which order they would be applied as
well as establishing evaluation criteria. Approaches such as
APOS Theory that focus on cognitive aspects of learning
might be useful in serving this goal. In this sense, a theory
could respond to an educational need. The characterization
of APOS Theory as “a framework for research and curricu-
lum development in mathematics education” (taken from the
title of Arnon et al., 2014) can be considered as an evidence
for this relationship as well as for the coherence between the
research goals and didactic objectives of APOS Theory.
These two types of goals are not considered as separate or
disjoint. In fact, research and didactic practice feed each
other. Apart from having theoretical implications, under-
standing the construction of a concept has didactical
implications; expressed differently, decisions about didacti-
cal designs have an epistemological basis in APOS Theory.
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The kinds of research questions that can be posed from the
viewpoint of APOS Theory might be formulated from a
developmental perspective, such as, “How can the function
concept be constructed by a generic individual?”. They can
also be evaluation oriented, such as, “What level of knowl-
edge, ability and understanding regarding the concept of
function can these students attain in their first three years of
high school?” (Dubinsky & Wilson, 2013, p. 88). These
sorts of questions can appear alone or together in the same
study where each type determines the role that the theory
would play in the research process as well as the nature of
results that can be obtained. They also imply the type of
didactical component to be included in a specific study.

APOS Theory does not take a prescriptive stance in that it
does not state its pedagogical recommendations using the
verb ‘must’; rather it offers didactical suggestions backed up
by theoretical analyses and empirical evidence. Its position
with respect to the learning of mathematical concepts is that
there might be several ways to construct a piece of knowl-
edge. As such, it does not concern itself with proscriptions
impeding certain approaches to the teaching-learning
process. According to APOS Theory learning progresses
through mental structures; certain pedagogical strategies
such as the use of programming activities motivate the
development of these conceptions. It is through reflection on
their mathematical activity that individuals construct mathe-
matical knowledge that is congruent with those
mathematical ideas that have been socially developed. The
main purposes of APOS Theory are understanding the con-
struction of mathematical knowledge and using this
knowledge to improve learning; however, it is not asserted
anywhere in this approach that there is a unique way to
achieve this goal. If we consider the improvement of learn-
ing as an end (referred to as ‘E’ in Gascon & Nicolas, 2017),
the implicit value content (we think it is more appropriate to
use this expression instead of value judgement) appears in
the form of pedagogical suggestions and design of activities
based on a genetic decomposition.

Although most studies conducted using APOS Theory
concern students’ understanding of mathematical topics, this
framework can also be used to focus on the teacher’s role
and how it relates to students’ constructions (Gavilan
Izquierdo, Garcia Blanco & Llinares Ciscar, 2007) as well as
to reflect about teachers’ professional knowledge (Badillo,
Azcarate & Font, 2011). Even if a course is not designed
using the theory, the analysis of reflection opportunities
opened by the teacher, the tasks used in class and the way
teachers interact with students may be analyzed in terms of
their favoring or not the constructions described by a genetic
decomposition. Contrasting this analysis with students’
actual constructions can also inform both the genetic decom-
position and the teacher’s practice.

An example

An example may illustrate how research conducted through
an APOS Theory lens can identify specificities about teach-
ing and the construction of knowledge. For several years, we
have been studying students’ construction of linear transfor-
mation concepts (see, for example, Romero Félix & Oktag,
2015). Results from each study gave rise to a refined genetic



decomposition, according to which algebraic and graphical
Actions are interiorized into the respective algebraic and
graphical Processes. Each pair of algebraic and graphical
Processes related to the two linearity properties are coordi-
nated to give rise to two Processes: the Process of
multiplication by a scalar property and the Process of addi-
tion property. These Processes are coordinated to give rise to
the linear transformation Process which is encapsulated into
an Object. In these studies and another focusing on students’
intuitions (Molina & Oktac, 2007) it was observed that in
certain contexts some students associated transformations to
individual vectors as opposed to the vectors of the whole
domain (a similar observation is reported in Sierpinska,
2000). Molina and Oktag (2007) suggest that students may
associate transformations to single vectors because of the
influence of some textbook figures where a single vector is
shown together with its image under a linear transformation.
Since one of the goals of APOS Theory is the analysis of
educational phenomena, and this tendency had not been
investigated thoroughly in the literature, we decided to study
it taking into account students’ constructions and their possi-
ble relation to teaching.

In terms of APOS Theory, this phenomenon can be related
to the difference between Action and Process conceptions.
We used a genetic decomposition to prepare a questionnaire
and an interview where one of the questions was designed to
specifically address this situation:

0 1
-1 0
is applied to it? Is it rotated or reflected? Justify your response.

when the matrix

Q. What happens to the vector ;

As a result of this study we found that responses to this
question clearly pointed out the differences between the
types of answers given by students who showed an Action or
a Process conception of linear transformations. Students
showing an Action conception tended to focus only on the
given vector and to find its image by multiplying the given
matrix by that vector and/or chose to represent vectors
graphically to decide their answer based on their intuition
according to visual cues provided by the graphical represen-
tation. A Process conception involves a generalization to the
vectors of the whole domain; students having constructed
this type of conception might choose a generic vector and
observe the effect of the matrix on that vector; or, argue in
terms of the characteristics of the matrix, observing what
kind of transformation is involved.

The questionnaire was applied to undergraduate students
from three different institutions in Mexico. From the total of
31 students who answered this question, 23 clearly based
their responses only on the given vector and its image. They
did not refer to the general effect of the matrix, nor apply it
to another vector. They did not take the initiative to choose
another vector because their strategy was Action oriented
and Actions are externally guided. This does not imply that
these students answered all the questions performing
Actions; in fact, some of them showed elements of a Process
conception. However, for them answering this question does
not require more than performing the Action of applying the
linear transformation to the given vector.

After the questionnaires were applied, 7 students were
interviewed with the purpose to examine their conceptions
more closely.

One of the students who considered the transformation as
a reflection was asked to choose another vector and find its
image under the same matrix. The intention was to confront
his first answer with what happens in this new situation.
After the student applied the matrix to [5 3] and got the
image vector [3 -5] he said it was a rotation. He added that
in the case of [2 2] it was a reflection and that the effect of
the matrix depended on the vector chosen. This student
showed the ability to apply the Action of finding images of
vectors under linear transformations given in their matrix
representation but had not yet interiorized it into a Process
and hence could not think about the transformation as being
applied to the vectors of the whole domain.

Another student attempted to generalize and said that the
image of a vector [x y] would be [x —y]. This might give the
impression of the student showing a Process conception,
however this particular generalization did not originate from
repeating Actions, reflecting on them and interiorizing them
into a Process; even if this student was thinking about the
transformation as being applied to the whole domain, the
transformation was not actually being applied to all the vec-
tors in it. Hence, the effect is described as a reflection
because the student sees a reflection in the given situation.

A Process oriented strategy was to examine the effect of
the matrix on a general vector. One student said that the
matrix inverts the axes and changes the sign of the y-coordi-
nate; hence it is a rotation by an angle 3rt/2. The application
of the transformation to the whole domain is clear in this
response.

Another student took another vector [1 2] by his own ini-
tiative, calculated its image, and from these two cases
responded that the transformation is a rotation. This student
argued that [2 2] is a particular case where rotation and
reflection give a similar result. The Process conception as an
interiorization of Actions makes it possible for this student to
repeat those Actions, when necessary, as part of a strategy
that considers the whole domain of the transformation.

Results obtained indicate that students who participated in
this study when faced with this question tend to focus on a
single vector to decide about the effect of a linear transfor-
mation. The novelty of the situation played a role in their
responses. Conceptions do not lie in individuals nor in the
mathematical problems; they have to do with a dialectic
relationship between the two (Dubinsky, 1997). On the other
hand, the fact that students from three very different institu-
tions were involved in the study points out that the results
cannot be attributed to an immediate didactical obstacle.

Many students who may be considered to have developed
sufficient knowledge about linear transformations after hav-
ing completed a course in linear algebra, may in fact be
functioning under an Action conception. Memorizing proce-
dures, imitating proofs and the related discourse might lead
them to succeed in the course, but if the basic structures are
not constructed, these strategies fail at some point.

As a next step the instructors of these students were inter-
viewed. T1 is a young teacher with three years of teaching
experience. T2 has been teaching for 12 years and has
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recently obtained a doctorate in Mathematics Education. T3
has been teaching for more than 30 years. All of them have
some knowledge of APOS Theory from participation in
seminars and T2 used APOS as part of her thesis’ theoretical
framework. They were asked about their teaching practices
concerning linear transformations and the kinds of responses
that they would expect from their students regarding the
question (Q). They were confronted with their students’
responses and their reactions were recorded.

When talking about their teaching none of the instructors
referred to using APOS Theory, although all of them men-
tioned that participating in the seminars made them aware of
the need to listen to their students and of discussing their
ideas when explaining new concepts. All of them described
their teaching as presenting their students with interesting
situations, letting them reflect and then using whole class
discussion to review students’ work as well as to institution-
alize the introduced concepts.

All the instructors expected their students to answer Q
correctly. They were all surprised to find out that this was
not true in most of the cases. For example, when T3 was
shown responses from his students such as the one appearing
in Figure 1 where it says that the vector is rotated by 90 to
the right or it could be a reflection about the x-axis, he made
the following comment:

I was not expecting this, that they wouldn’t verify. /...]
I feel that their knowledge consists of pieces that they
do not relate, and perhaps when you do it you think
they understood and they connected things, and I know
some do, and they are able to solve quite complex prob-
lems, but at other times if you present it to them again
they don’t know it.

Actually, T3 did not expect his students to use a general-
ized approach in their responses, but he did expect them to
use more vectors to verify their answers since he had placed
a lot of emphasis on verification in class. He was disap-
pointed that the majority of his students did not verify. When
asked about how this difficulty could be overcome, he said
that he would emphasize the fact that a transformation is a
function and as such, focus more on its domain.
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During her interview, T2 said that as a result of the ques-
tionnaires and interviews, she now includes different kinds
of problems in her teaching, such as asking for the image of
whole figures instead of only vectors; however, she cannot
use questions that were not solved in class for evaluation
purposes in exams.

After seeing the results of this study, T1 also started to
employ questions that emphasize the functional character of
transformations, including their domains and images. He
remarked that through these results he realized that what the
teacher knows or does in the classroom has little effect if the
teaching is not student centered.

Taking into account the results obtained, it is clear that the
teaching component of APOS Theory can help teachers to
reconsider their approaches. From an APOS perspective, our
suggestion would be to design instruction informed by a
genetic decomposition and directed towards the construction
of those mental structures called for by it. In particular,
based on our observations in this study, problem situations
that might be helpful can include asking the students to
apply a specific linear transformation to different vectors of
the domain and to try to explain its effect on specific vectors
as well as on the whole domain; repeating the previous ques-
tion for different linear transformations as well as different
domains and ranges. These situations invite the students to
reflect on their Actions, leading to their interiorization, but,
as stated before, these suggestions are not normative.

Closing remarks
The hypotheses, context of study and objectives of APOS
Theory as well as its limitations are clearly exposed as part
of the framework. The theory includes a research methodol-
ogy which is coherent with its research and teaching ends. It
is employed to investigate educational phenomena of inter-
est. It also includes a methodology of curriculum and
instrument design consistent with the purpose of helping stu-
dents to construct mathematical concepts. Genetic
decomposition plays a prominent role as a model which pre-
dicts possible constructions and guides both the design of
research and the development of didactic material.
Confronting this genetic decomposition with observations
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Figure 1. A student s answer.
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of individuals while they are constructing the concepts
allows recognition and diagnosis of different aspects of
learning: characteristics of cognitive structures and relations
between them. It also allows the design of theory-based
teaching activities as pedagogical proposals that may help
students to learn the intended concepts in line with mathe-
matical theory.

APOS Theory focuses on describing how knowledge is
constructed. As such it does not emphasize difficulties that
occur in the learning of concepts; however, these can be
explained naturally from the viewpoint of genetic decompo-
sition and attended to from the same perspective.
Knowledge of a genetic decomposition can also help teach-
ers to design teaching activities and didactic strategies as
well as to ponder differently the need to open spaces for stu-
dents to reflect on their Actions and to develop
interiorization opportunities. The difference between help-
ing students answer specific types of problems and helping
students develop a Process conception implies a strategic
plan that can be suggested by a genetic decomposition. The
cyclic nature of APOS Theory research makes it possible to
reconsider and adjust both the genetic decomposition and
the didactic suggestions intended for a generic individual.
These cycles reflect the dialectical perspective between the
individual and collective dimensions included in the theory.

There might be some tendency to think that cognitive the-
ories are restrictive in explaining educational phenomena
and that research should be performed from a broader per-
spective. We should, however, not forget that in the exact
sciences, for example, theories that tackle problems from a
microscopic viewpoint have made invaluable contributions
to the development of knowledge, although they might have
left out important aspects about observable phenomena.
Macroscopic and microscopic viewpoints can coexist and
play an important role in our understanding of the world.
Both perspectives are valid as research fields. Based on
these considerations, we posit that the cognitive viewpoint
has a lot to offer in our understanding of the teaching-learn-
ing process.

On the other hand, during the interviews with instructors
we clearly observed the importance of institutional con-
straints in their decisions. Some of these constraints may be
real and some might be related to the teachers’ perception.
APOS Theory can provide elements for reflection, but this is
not enough to overcome difficulties that teachers experience
in their classrooms. Instructors need support and accompani-
ment in the implementation of teaching strategies. It is a
long way from reflecting on students’ construction of knowl-
edge to designing instructional treatments in line with that
reflection. We, as researchers, think that studies with teach-
ers can benefit highly from a combined perspective using
APOS Theory and ATD (Anthropological Theory of the
Didactic) and plan to undertake this approach in our next
study.
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