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Mathematics thrives on ambiguity. Far from eternal, mathe-
matical truths depend on context. Math lives in the 
both/and; in the for now and it depends. Mathematics lives 
in the what if?  

I was early in my journey of understanding these truths 
when I wrote ‘Perimeter in the Curriculum’, in issue 25(1), 
more than 15 years ago. I am delighted and honored by 
Jérôme Proulx’s revisiting of the ideas and arguments I pre-
sented back then, and I am especially excited by his new 
classroom example. 

The students arguing about whether the perimeter of a 4 cm 
by 8 cm rectangle, when drawn on a grid, is 28 or 36, and 
using the idea of enclosure to do so is an enlightening exam-
ple, and it suggests new questions. Would their arguments 
and/or conclusions have been different if the rectangle had 
no underlying grid? If so, how? Is there any plane figure for 
which these two counting strategies agree, either with each 
other or with the more conventional idea of perimeter? I 
have come to understand that much more mathematics hap-
pens when learners work to resolve such ambiguities than 
when a neat and tidy definition leads everyone to the same 
conclusion. 

Beyond that single example, I am grateful to Proulx for 
what his writing highlights about mathematical ideas in gen-
eral. While he ponders perimeter, many mathematical 
concepts have the same kind of duality. Is perimeter a 1- or 2-
dimensional concept? Few novices are satisfied with the 
formal answer to this question (which Proulx discusses)—that 
perimeter is a 1-dimensional measure of an object embedded 
in 2-dimensional space. So, for many learners the answer 
shifts depending on how they’re looking at it in the moment.  

Is surface area a 2- or 3-dimensional concept? Does a cir-
cle have 0 sides or 1? Is a cone a kind of pyramid? Is a dozen 
singular or plural? Each of these questions requires setting 
further conditions—set them one way to get one answer; set 
them another to get a different one. 

A central challenge of teaching and learning mathematics 
is coming to understand each other’s perspectives; to know 
‘the sense in which’ a person’s mathematical claims are true, 
as the mathematician Eugenia Cheng has put it [1]. A com-
mon conception of mathematics is that the only sense which 
matters is the one recorded in textbooks. But math learning 
does not involve a simple erasure of a learner’s previous 
ideas and replacement with new ones. Instead, learning 
requires integration and evolution of existing ideas into 
more complex, robust, and nuanced understandings. I am 

grateful to Proulx and his students for helping me to under-
stand a sense in which perimeter is about enclosure, and how 
that enclosure might involve 2-dimensional components. I 
am grateful for this newly exposed ambiguity. 

 
Note 
[1] Eugenia Cheng is a mathematician and author who teaches at the School 
of the Art Institute of Chicago. In her 2018 book ‘The Art of Logic in an 
Illogical World’, she cites her Ph.D. advisor as saying “There is a sense in 
which” before making claims. Cheng writes, “It reminds us all that mathe-
matics is not just about finding the right answer, but is about finding the 
sense in which things might or might not be true” (p. 124-5). 

 
 

Zero probability and dimensional 
confusions 

ALI BARAHMAND 

Zero probability and zero- and one-dimensional objects 
share a counter-intuitive nature that I explore in this commu-
nication. I believe that considering the concepts together 
reveals something about the source of their counter-intuitive 
characters and leads to observations that could be of impor-
tance to mathematics education. 

The probability of an event is a ratio comparing the number 
of ways  in which an event can occur to the total number of 
events in the sample space. An event with zero probability is 
called an impossible event. It is an event that cannot happen. 
The probability of rolling 7 on a single six-sided dice is zero. 
But in some contexts, events with zero probability do occur. 

When we speak of hitting the centre of a target, we nor-
mally refer to an area, the bullseye, and the probability of 
hitting the bullseye depends on its area compared to the total 
area of the target, the cross-sectional area of the projectile 
and the skill of the shooter. If we consider the probability of 
hitting the mathematical centre with a projectile whose 
cross-section is a single point, however, the probability is 
zero. The sample space of points on the target is infinite, and 
only one of them is the centre. The same applies to any point 
on the target, yet our projectile must hit somewhere, and an 
event of zero probability will occur. 

The seeming contradiction of an event of zero probability 
occurring seems to be related to the shift from the realistic sit-
uation of hitting a two-dimensional bullseye with a projectile 
with a two-dimensional cross-section, to the mathematical 
situation of hitting a zero-dimensional point with a projectile 
with a zero-dimensional cross-section. But we can also see 
that if either the target or the projectile has area, the problem 
does not occur. One cannot mark the exact centre of a target, 
but with a real projectile with a cross-sectional area (say a cir-
cle of radius r) it is possible to hit the centre, by hitting any 
point less than distance r from the centre. Similarly, a projec-
tile whose cross-section is a single point will hit a normal 
bullseye as long as it hits any point within the bullseye.  
Perhaps it is because our point-projectile and the centre both 
lack area that the probability becomes zero. 

In fact, area is not required for there to be a non-zero 
probability of a projectile hitting a bullseye. If the bullseye 

Communications 
 

Response to ‘Conceptualiser le 
périmètre’ 
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is a segment (see Figure 1), and the projectile’s cross-section 
is also a segment, the probability of hitting the bullseye is 
non-zero. 

If we aim for a segment with a point-projectile, the proba-
bility is again zero, even though the space of successful 
events now includes an infinite number of points. In a two-
dimensional target, the probability of hitting any part with 
fewer dimensions, such as a zero-dimensional point or a one-
dimensional segment, with a point-projectile, will be zero. 

We can even cover the target with many parallel segments 
without increasing the probability above zero (see Figure 2). 
Intuitively, the greater the number of segments, the greater 
the chance of hitting them [1]. Individuals might think that 
the chance of hitting the segments in Figure 2 is higher than 
hitting the single segment drawn in Figure 1. But in both 
cases the probability is zero. 

The same can be said of the effect of increasing the length 
of the segment. One may think that the probability of hitting 
the segment will be higher when the length of the segment is 
longer. For example, hitting the diagonal (Figure 3) should 
be easier than hitting the segment in Figure 1. But again, 
both have zero probability. 

This is related to a well-known conflict regarding the area 
of parallelograms and rectangles. Suppose we put together 
many equal segments as shown in Figure 1, and diagonals as 
shown in Figure 3, to obtain a square and parallelogram with 
identical bases and heights (Figure 4). The shapes appear to 
be made entirely of segments. “Intuition might suggest that 

because the line segments that form the parallelogram are 
longer than the ones that form the rectangle, the area of the 
parallelogram is larger than the area of the rectangle.” 
(Burazin, Kajander & Lovric, 2021, p. 1346) 

This is despite the fact that the square and parallelogram with 
identical bases and heights have the same area from a mathe-
matical viewpoint. The root of this conflict lies in what was 
discussed about the difference between the dimensions: the 
two-dimensional figure is not the sum of the one-dimensional 
line segments. The figure has area, and the segments do not. 

The standard solution to this problem is to think of the 
segments as the limits of sequences of parallelograms of 
ever-decreasing height. Diagonal parallelograms are longer, 
but not as wide (see Figure 5). 

Here, the smaller side of the parallelogram on the right is 
as long as the width of the rectangle on the left, a, so its 
height is a/√2. The base-length of the parallelogram equals 
√2b. Therefore, the area of a rectangle and a parallelogram, 
obtained by partitioning them into equal numbers of ‘seg-
ments’ being equal in area, will also be equal. 

This suggests a way to resolve the contradictory occurrence 
of events of zero probability. If we consider the probability of 
a projectile of cross-section A hitting a bullseye of area A, and 
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Figure 1. A segment as ‘bullseye’.

Figure 2. Many segments as ‘bullseye’.

Figure 3. A longer segment as ‘bullseye’.

Figure 4. A square and a parallelogram formed of segments 
(modified from Burazin, Kajander & Lovric, 
2021, p. 1346).

Figure 5. Segments as limits of rectangles.
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the limit of these probabilities as A goes to zero, we can state 
that the limit is zero, without it becoming impossible for a 
point-projectile to hit a target. Thus it is possible to distinguish 
between events of zero probability that are impossible, like 
rolling a 7 on a single six-sided dice, and events that have zero 
probability as a limit, which are not impossible. 

 
Note 
[1] We represent points and segments with patches of ink that have width, so 
that they are visible. We think of segments of zero width, but we draw seg-
ments with width. Looking at Figure 2, it is visually clear that the segments 
cover more of the area, so it is not surprising that one expects the probability 
of a point-projectile hitting one of the segments is higher. The representation 
supports the intuition that more segments should be easier to hit. 

 
Reference 
Burazin, A., Kajander, A. & Lovric, M. (2021) Reasoning about geometric 

limits. International Journal of Mathematical Education in Science and 
Technology 52(9), 1345–1360. 

 
 

Moser’s worm problem: an 
unsolved problem in plane 
geometry 

L. FELIPE PRIETO-MARTÍNEZ 

This problem was posed by Leo Moser in 1966 in a mimeo-
graphed list of problems [1]: 

What is the region of smallest area which will accom-
modate every arc of length l?  

This problem has come to be known as the worm problem, 
and can be rephrased: 

Define a worm to be any plane curve of length one. 
Define a cover to be a plane region that can accommo-
date any worm, that is, the worms have a fixed shape 
that cannot be altered, but they can be rotated and trans-
lated to fix into the region. Find, if it exists, the cover of 
smallest area. 

Here we focus on the case in which the cover is additionally 
required to be convex, which ensures it exists. 

It is easy to find simple regions that can accommodate any 
worm. For instance, a disk of diameter 1 is a cover. Wetzel 
(1973) gives a proof due to Meir that a semi-disk of diameter 
1 is a cover. Gerriets and Poole (1974) proved that the rhom-
bus with diagonals of lengths 1 and 1⁄√3 (obtained by ‘gluing 
together’ two equilateral triangles of side length equal to 
1⁄√3) is also a cover (see Figure 1). I suggest that the reader 
try to prove this.  

Quite recently, Panraksa and Wichiramala (2020) showed 
that a 30 degree circular sector is also a cover. This is the 
best convex cover known, at this time.  

As with Kobon’s Triangle Problem (discussed in 41(3)), one 
of the main obstacles is that there is no known general strategy 
for showing that a given planar region is a cover. Gerriets and 
Poole tried to find such a strategy. They conjectured that: 

If a convex region contains all “two angle worms” of 
length L, then the region contains all worms of length L.  

By “two angle worms” we mean all arcs formed by 
joining consecutively, at any angles, three segments 
whose total length is L. (1974, p. 41) 

This was later disproved by Panraksa, Wetzel and Wichiramala 
(2007). who showed that the conjecture is not true for any 
polygonal worm, that is, any chain of finitely many seg-
ments joined end to end. 
 
Notes 
[1] The list is reproduced in William Moser’s 1991 article ‘Problems, prob-
lems, problems’ in Discrete Applied Mathematics 31, 201–225.  
[Editor’s Note] This is one of a series of unsolved problems. The first 
appeared in issue 41(3). 
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Why would a biologist need a 
logarithm? 

IGOR V. ANDRIANOV 

Students of our times are very practical persons. “Why do I 
need mathematics if I plan to study psychology or biology? 
Or if I will be an artist? Why do I need exponentials, loga-
rithms, etc.?”. Perhaps future psychologists, biologists and 
scholars in the humanities will treat mathematics with more 
attention if they are reminded of the existence of the Weber-
Fechner law [1]. 
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Figure 1. Rhombus cover from Gerriets and Poole (1974,  
p. 37).
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The Weber-Fechner law states the logarithmic relation-
ship between perceived intensity and stimulus strength. 
Weber established this rule as a result of experiments on the 
subjective perception of the loudness of tones. This observa-
tion was formulated mathematically by Fechner: 

where b is the constant called the difference threshold,  
R – R0 is the difference in the power of the signal and the 
nearest subjectively lower signal, and S – S0 is the difference 
in subjective loudness of these signals. 

According to the Weber-Fechner law, a human’s response 
to an external influence is not linear, but proportional to the 
logarithm of the disturbance. This law, like everything in our 
life, has both positive and negative sides. It is good that a burn 
covering 10 cm2 of skin, does not result in 10 times greater 
pain than a burn covering 1 cm2, but only ln(10) times. 

The negative side was indicated, for example, by Leo Tol-
stoy. In a letter to his son Mikhail, warning the latter against 
being too carried away by various “joys of life”, Leo Tolstoy 
wrote, “There is even a law according to which it is known 
that pleasure increases in an arithmetic progression, while 
the means for producing this pleasure must be increased in 
squares”[2]. The statement of the Weber-Fechner law is not 
entirely accurate, but the essence of the statement is 
absolutely correct! 

The logarithmic narrowing of the spectrum of external 
influences is so characteristic of the phenomena of life that it 
can be used to define it. Molchanov (1992) wrote: 

One of the most characteristic properties of biological 
objects is the enormous range of irritations within 
which the system operates normally. The logarithmic 
scale of responses is the only opportunity to cover all 
informationally significant irritations, while retaining 
acceptable size of organs. Systems that could not 
develop this property in themselves simply could not 
stand the struggle for existence. (p. 150, my translation)   

The Weber-Fechner law manifests itself in rather unex-
pected places. Scientist and designer Boris Rauschenbach 
was one of the key figures in the Soviet space program. He 
studied docking of space vehicles, one of the most challeng-
ing aspects of space flight. Soviet spaceships were designed 
in such a way that the astronaut could only see the docking 
apparatus on a monitor, that is, on a flat screen. The visual 
perception of changing distance does not coincide with its 
actual change. Of course, this is due precisely to the Weber-
Fechner law. The image on a flat screen is misleading the 
astronaut. The solution of this technical problem led 
Rauschenbach to professional studies of the theory of graph-
ical perspective. Rauschenbach (1983, 1986) found that the 
systems of perspective in the paintings of artists are associ-
ated with their intuitive consideration of the transforming 
activity of the brain. If you look into the distance, then the 
apparent change in linear dimensions in the direction per-
pendicular to the line of sight is proportional to the 
logarithm of the distance to this subject. A linear perspective 
takes this into account. For near vision, a logarithmic depen-
dence is also characteristic, which can be approximately 
replaced by an inverted perspective. 

Naturally, all ‘laws of nature’ are approximations. “As far 
as the laws of mathematics refer to reality, they are not cer-
tain; and as far as they are certain, they do not refer to 
reality” (Einstein, in Calaprice, 2000, p. 240). If the external 
influence is too intense, the logarithmic response does not 
help and the biological system can collapse catastrophically. 
However, such phenomena are a separate topic; other func-
tions are needed to describe them, in particular, the 
exponential function. 

As for me, I will consider my task complete if students 
willing to devote themselves to biology or psychology begin 
to treat the function ln(x) with respect. 

 
Notes 
[1] Named after Ernst Heinrich Weber (1795–1878), a German physician 
and Gustav Theodor Fechner (1801–1887), a German experimental psy-
chologist, philosopher, and physicist. 
[2] My translation of “Существует даже закон, по которому известно, 
что наслаждение увеличивается в арифметической прогрессии, тогда 
как средства для произведения этого наслаждения должны быть 
увеличены в квадратах.” From a letter from L.N. Tolstoy to his son M.L. 
Tolstoy dated 16.10.1895, in Tolstoy (1984, Vol. 19, p. 334). 
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Explicit instruction or poor  
realizations of dialogic  
instruction: which is better? 

TYE G. CAMPBELL, HALEY H. PARKER, 
ANNA KEEFE 

Over the last three decades, there has been much debate sur-
rounding two contrasting modes of mathematics instruction: 
explicit instruction and dialogic instruction. Proponents of 
explicit instruction believe that students learn best through 
explicit guidance from an authority (teacher, textbook, etc.) 
(Clark, Kirschner & Sweller, 2012). In such environments, 
students are believed to acquire knowledge by actively lis-
tening to their teacher (or other authoritative resource) and 
engaging in guided practice. In contrast, proponents of dia-
logic instruction believe that students learn best when they 
work on challenging tasks with their peers while the teacher 
facilitates, rather than explicitly guides, student learning 
(Munter, Stein & Smith, 2015). In dialogic classrooms, stu-
dents are believed to construct knowledge by sharing their 
ideas, making sense of others’ ideas, drawing on prior 
knowledge, and participating in meaningful activities. 
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Proponents of both sides of the debate claim strong theo-
retical and empirical support for their instructional method 
(e.g. Clark, Kirschner & Sweller, 2012; Kirschner, Sweller 
& Clark, 2006 versus Boaler & Staples, 2008; Johnson, 
Johnson & Roseth, 2010). Considering the claims of both 
sides of the debate, it seems that one can create conditions  
to support either hypothesis. In other words, the research is 
inconclusive regarding which approach to instruction is  
‘better’ as a general rule. 

In this short communication, we explore a different ques-
tion than is generally considered in the debate. Whereas most 
researchers provide empirical or theoretical arguments regard-
ing why standard versions of explicit or dialogic instruction 
are preferable, here, we explore the following question: 

Which is ‘better’: Standard versions of explicit instruc-
tion or poor realizations of dialogic instruction? 

We clarify the details regarding why this is an important 
question to address shortly. 

Before explaining our arguments, we address a few sub-
jectivities. First, the authors are graduate students, assistant 
professors, and former educators who draw on their experi-
ences and numerous observations, both formal and informal, 
of grade 6–12 mathematics teachers and teacher candidates 
to stimulate conversation in relation to the posed question. 
This short communication is not empirical, and thus, should 
be treated for what it is—musings from scholars to add 
nuance to an important debate in mathematics education. 
Second, we acknowledge that ‘instructional type’ is fluid 
and therefore not a dichotomous variable; however, teachers 
tend to lean towards particular instructional strategies, and 
categorical comparisons of these strategies allow researchers 
and stakeholders to meaningfully deliberate about how 
teachers should teach. Third, we tend to promote and align 
with dialogic approaches to instruction in our research and 
practice. We believe, when implemented with fidelity, dia-
logic instruction is a highly successful instructional strategy. 
However, we ignore favorable versions of dialogic instruc-
tion here, for reasons expounded upon below. 

 
Why the comparison? 
Based on our formal and informal observations of novice 
and experienced teachers, we claim that teachers who use 
dialogic instruction usually implement it in ways that are 
inconsistent with the literature (i.e. ‘poor realizations of dia-
logic instruction’). In contrast, teachers who use explicit 
instruction often implement it in the way it was intended, as 
described by proponents of explicit instruction. In dialogic 
classrooms, we have noticed that teachers face challenges 
that hinder the goals of dialogic instruction. Teachers often 
struggle to: (1) keep students on task, (2) ask the right ques-
tions to support learners in building conceptual 
understanding, (3) maintain focus on the lesson objectives, 
and (4) successfully mitigate group hierarchies that form 
through discourse. This is not an exhaustive list—indeed, 
researchers have identified many challenges teachers face 
that we could expound upon (see, e.g., Franke, Kazemi & 
Battey, 2007; Heyd-Metzuyanim, 2019), but will refrain for 
the sake of brevity. In contrast to dialogic teaching, it seems 
that teachers using explicit instruction are usually able to 

directly teach learners and provide them with guided prac-
tice activities, with minimal deviations from the standard 
expectations of explicit instruction. 

It should come as no surprise that teachers have more diffi-
culties implementing dialogic instruction in comparison to 
direct instruction. Dialogic instruction is much more complex, 
requiring teachers to possess deep mathematical knowledge 
for teaching, extraordinary classroom management skills, and 
knowledge of responsive teaching moves (e.g. Franke, 
Kazemi & Battey, 2007). Teachers who use explicit instruc-
tion can, for the most part, follow a predetermined script. 
Because explicit instruction is teacher- centered, teachers 
rarely need to modify their plans in the midst of a lesson. 

In sum, the reason we compare standard versions of 
explicit instruction with poor realizations of dialogic instruc-
tion is because we believe these two types of instruction are 
most common in their respective categories. 

 
Defining ‘better’  
The success of classroom instruction is measured in a vari-
ety of ways in the literature. Here we focus on three of the 
most prevalent ways to measure the success of mathematics 
instruction: (1) mathematics achievement as defined by stan-
dardized test scores, (2) opportunities for engaging in 
mathematical practices (e.g. justifying ideas, critiquing the 
reasoning of others, etc.), and (3) student motivation/interest 
in mathematics. Proponents of explicit instruction generally 
perceive standardized test scores as the most important tool 
for measuring the quality of classroom instruction (e.g. 
Clarke, Kirschner & Sweller, 2012). While proponents of 
dialogic instruction similarly value standardized test scores 
as a measurement tool, they also believe quality is measured 
through the opportunities afforded to learners for engaging 
in meaningful mathematical practices (e.g. Boaler, 2002). 
Research has also documented student motivation/interest in 
mathematics as an important measurement of classroom 
instruction, since learners’ perceptions towards mathematics 
can profoundly shape their mathematical trajectories (e.g. 
Heyd-Metzuyanim & Sfard, 2012). 

Now let us address the question: Which is better in terms 
of these three forms of measurement? 

Student achievement 

In relation to student achievement as defined by standardized 
test scores, it seems that explicit instruction is preferable to 
poor realizations of dialogic instruction. During our observa-
tions of dialogic instruction, we have noticed that teachers 
often devote a substantial amount of time to a single mathe-
matical topic, students are often off-task during group work, 
and learners struggle to make connections between their dis-
coveries and the intended mathematical objectives. Indeed, at 
the close of many of our observations, we wonder whether 
students realized the mathematical objectives or could suc-
cessfully answer questions related to the objectives. In 
standard versions of explicit instruction, teachers generally 
cover more mathematical content and the mathematical 
objectives remain consistent and clear throughout a lesson. 
Because students receiving explicit instruction have opportu-
nities to experience more mathematical content through an 
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explicit and consistent curriculum with less distractions (e.g. 
off-task talk), we claim they will likely perform better on 
standardized achievement tests (when confounding vari-
ables are similar). Even proponents of dialogic instruction 
acknowledge that explicit instruction can help students learn 
mathematical procedures (e.g. Boaler, 2002), which is an 
important component of standardized tests. 

Opportunities for engaging in mathematical practices 

Proponents of dialogic instruction perceive learning, not only as 
acquiring information, but also as a form of participation in 
mathematical practices (e.g., Boaler, 2002). Therefore, from a 
dialogic perspective, it is important to measure the opportunities 
students are afforded for engaging in mathematical practices 
(e.g., conjecturing, justifying, explaining strategies, critiquing 
the ideas of others) to determine the success of instruction. 
Within poor realizations of dialogic instruction, learners experi-
ence opportunities to share their mathematical ideas and hear 
others’ ideas. In our experience, however, learners often do not 
engage in meaningful practices, such as critically evaluating 
others’ ideas; instead, student dialogue often remains at a sur-
face-level wherein learners share their solutions without 
engaging in debate or deliberation about mathematical differ-
ences. In standard versions of explicit instruction, students 
generally only have opportunities to imitate strategies that were 
first performed by the teacher. There are few opportunities to 
engage in meaningful mathematical practices other than practic-
ing procedural fluency. Taken as a whole, we perceive that 
learners have more opportunities to engage in mathematical 
practices during poor realizations of dialogic instruction in com-
parison to explicit instruction, though learners may not often 
take up these opportunities meaningfully. 

Motivation/interest in mathematics 

Finally, neither poor realizations of dialogic instruction nor 
explicit instruction seem to support learners’ motivation/ 
interest in mathematics based on our observations. In poorly 
constructed dialogic classrooms, we have observed learners 
talking to one another in ways that could detrimentally influ-
ence learners’ beliefs about their mathematical abilities (rude 
remarks, one person assuming authority, etc.). Groups often 
create hierarchies that determine who is ‘smart’ and worthy 
of attention, unless teachers remain proactive and create pos-
itive group norms (which often does not happen in poor 
realizations of dialogic instruction). In standard versions of 
explicit instruction, students can become unengaged and sim-
ply ‘go through the motions’ when instruction becomes 
monotonous. While students can learn through simply imitat-
ing authority figures, such engagement can cause students to 
lose interest in mathematics because they find it boring or 
unimportant. In sum, both dialogic and explicit instruction 
exhibit limitations in relation to supporting learners’ motiva-
tion/interest in mathematics, albeit for different reasons. 
 
What now? 
Now, let us recap the claims we made above based on our 
observations of teachers and teacher candidates: 

1. Explicit instruction seems more beneficial than 
poor realizations of dialogic instruction in relation 

to supporting student achievement as defined by 
standardized test scores. 

2. Poor realizations of dialogic instruction provide 
students with more opportunities to engage in 
mathematical practices. 

3. Neither poor realizations of dialogic instruction nor 
explicit instruction seem to support students’ math-
ematical interest/motivation. 

Naturally, the question is, where does the field go from 
here? We make provocative claims—claims that are based on 
anecdotal evidence rather than empirical research. Therefore, 
the first step is for researchers to empirically investigate our 
initial claim: dialogic instruction is usually realized in ways 
that are inconsistent with literature. Then, researchers could 
investigate whether the hypotheses we propose are true 
regarding which form of instruction is better (e.g., standard 
versions of explicit instruction lead to higher student achieve-
ment than poor realizations of dialogic instruction). 

If empirical research upholds our claims, then researchers, 
policymakers, and practitioners are faced with important 
decisions. We believe that if teachers understood the hall-
marks of dialogic instruction (types of dialogic assessment, 
questioning techniques, progression of instruction, etc.), 
then they would be more likely to implement dialogic 
instruction with fidelity. The field still has much work to do 
to identify these hallmarks, on which research is currently 
underway (e.g., Campbell, 2021; Gillies, 2019; Langer-
Osuna, Munson, Gargroetzi, Williams & Chavez, 2020). In 
the meantime, teachers and researchers might discuss strate-
gies for using hybrid approaches to instruction depending on 
the context and level of comfort of the teacher. Teachers who 
navigate the complexities of dialogic instruction comfort-
ably might rely more heavily on student dialogue and 
minimal teacher guidance, whereas teachers with less com-
fort may rely more heavily on explicit guidance. Perhaps 
such contextual features (e.g., student/teacher characteris-
tics, teacher experience/strengths, etc.) should play a more 
prominent role in decisions about teaching and learning than 
they have in the past. 

We hope this short communication motivates research and 
discussion regarding two primary modes of instruction. The 
ideas presented here should not be used in support of either 
side of the argument. Rather, we shed light on a new aspect 
of the debate. 
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Horizon knowledge and the  
complexities of contingency: a 
scenario from a senior secondary 
mathematics classroom 

NICOLE MAHER, HELEN CHICK, TRACEY MUIR 

A group of senior secondary school students were studying 
probability distributions. Their teacher, Mr. McLaren, 
assigned some textbook problems which required them to 
determine what happens to the variance when random vari-
ables undergo a transformation. The students had been given 
the formula Var(aX+b) = a2Var(X) for determining variance 
with the original random variable X and the transformation 
aX+b. Just as Mr. McLaren was modelling a specific exam-
ple, one of the students interrupted him: 

Grace What happened to the b? [She indi-
cated the absence of b in the 
right-hand side of the relationship 
Var(aX+b) = a2Var(X) that was 
written on the whiteboard.] 

Mr. McLaren [After a pause] It’s just gone. 

Grace Really! [She sounded amazed].  

Mr. McLaren Yeah. [He paused for a couple of 
seconds.] We could look at why but 
I’m not too fussed.  

As the students continued working, however, Mr. McLaren 
seemed to ponder Grace’s question. He looked down at his 
open textbook, turned a couple of pages and appeared to 
think for a while, before turning to the whiteboard again.  

Mr. McLaren If you think in terms of what the 
variance actually is, I said I wasn’t 
going to show you, but anyway  

Mr. McLaren cleared the whiteboard and proceeded to 
express Var(aX+b) using the defining relationship Var(X) = 
E(X2) – [E(X)]2, where E(X) indicates the expected value of 
X. He hesitated a little, checked the textbook again, and 
wrote the following statement on the whiteboard: 

At that point Mr. McLaren stopped [1]. He did not attempt 
to expand and evaluate the final expression, but hastily 
explained that, “in the end, what will happen is we end up 
with minus b squared on the end, so the b squared terms end 
up cancelling out”. He added: “I don’t think you’re going to 
come across this at all”, as if to indicate that the students 
need not worry about it. He then continued with the rest of 
the lesson. Later, however, in a post-lesson interview, Mr. 
McLaren provided a more thorough and detailed justifica-
tion for why Var(aX+b) = a2Var(X).  

I’m figuring out a way of explaining it better. I think I 
was fumbling around a bit there, but [pause] because 
‘a’ is having a multiplying effect on all of the ‘X’ val-
ues and ‘b’ is having an additive effect. When it comes 
to variance, you’re not worried about the additive effect 
because the spread is all added by that […] ‘b’ so the 
variance doesn’t get changed by the ‘b’. So ‘b’ has no 
effect on the variance which is a measure of spread. 
The spread remains the same […] that’s why the ‘b’ 
disappears. But the ‘a’ does have a multiplying effect 
and because variance is about a square of the differ-
ences the ‘a’ has got to be squared. 

 

Commentary 
Grace’s question illustrates the organic nature of mathemat-
ics lessons and how opportunities arise that urge the teacher 
to make in-the-moment decisions relating to how—or even 
whether—to embrace a contingent event. Mr. McLaren was 
initially reluctant to discuss why b disappears, beyond the 
fact that it is “just gone” because he knew that the course 
and its external examination did not require students to 
derive or prove formulae. In the end, however, he did 
attempt to algebraically verify the relationship between 
Var(aX+b) and a2Var(X), even though the resulting explana-
tion was vague and incomplete. The lack of rigour in this 
explanation reflected the fact that Mr. McLaren was not 
accustomed to explaining why Var(aX+b) = a2Var(X). Nev-
ertheless, his actions were indicative of the kind of 
knowing-to-act that Mason and Spence (1999) discuss. 
Knowing-to-act is an intricate and dynamic phenomenon 
that involves more than possessing a bank of knowledge for 
effective mathematics teaching. As highlighted by Mason 
and Davis (2013), it is “one thing to notice an absence of 
something from a learner, but quite another thing to have  
a sensible pedagogical action come to mind when needed” 
(p. 183). Knowing-to-act results in “being mathematical 
with and in front of the learner”, a phrase used by Mason 
(e.g., 2008, p. 307) to describe a teacher’s sensitivity to 
opportunities to initiate action in ways that enable students 
to become aware of important aspects of the mathematics at 
hand. In this case, Mr. McLaren was willing to “be mathe-
matical with and in front of” his students but he struggled to 
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assemble and deploy, in the moment, a clear and thorough 
explanation. Here is where the notion of horizon content 
knowledge (HCK) is particularly valuable. 

HCK is a category of mathematics knowledge for teach-
ing introduced by Ball and her colleagues (e.g., Ball & Bass, 
2009; Ball, Thames & Phelps, 2008) that is concerned with 
“having a sense of the larger mathematical environment of 
the discipline being taught” (Jakobsen, Thames & Ribeiro, 
2014, p. 4). Jakobsen and his colleagues, in collaboration 
with Ball and Bass, developed the following working defin-
ition of horizon knowledge. 

Horizon Content Knowledge (HCK) is an orientation to 
and familiarity with the discipline (or disciplines) that 
contribute to the teaching of the school subject at hand, 
providing teachers with a sense for how the content 
being taught is situated in and connected to the broader 
disciplinary territory. HCK includes explicit knowledge 
of the ways of and tools for knowing in the discipline, 
the kinds of knowledge and their warrants, and where 
ideas come from and how “truth” or validity is estab-
lished. HCK also includes awareness of core disciplinary 
orientations and values, and of major structures of the 
discipline. HCK enables teachers to “hear” students, to 
make judgments about the importance of particular ideas 
or questions, and to treat the discipline with integrity, all 
resources for balancing the fundamental task of connect-
ing learners to a vast and highly developed field 
(Jakobsen, Thames & Ribeiro, 2014, p. 4) 

This expansive definition foregrounds the importance of 
how knowledge is held by teachers, aligning with Schwab’s 
(1978) distinction between substantive knowledge (how 
skills and concepts are organised and connected within a dis-
cipline) and syntactic knowledge (the ways in which 
knowledge is generated within a specific discipline and how 
it is deemed valid or otherwise). The definition also alludes 
to the significance of contingency by highlighting that HCK 
enables teachers to ‘hear’ students and to “make judgments 
about the importance of particular ideas or questions” 
(Jakobsen, Thames & Ribeiro, p. 4). Contingency, in the 
work of Rowland and his colleagues, is concerned with the 
ways in which teachers respond to classroom events as they 
unfold. It refers to situations that are “almost impossible to 
plan for” but which instantly demand something of the 
teacher (Rowland, Huckstep & Thwaites, 2005, p. 263). 
Rowland and his associates highlight that students’ ideas 
(e.g., unsolicited questions or comments) are indicators of 
their meaning-making, and that the ways in which teachers 
engage (or not) with students’ unexpected ideas have impor-
tant implications for the meaning-making process.  

Mr. McLaren’s HCK was evident, to some extent, in his 
initial attempt to help the students make meaning of the rela-
tionship Var(aX+b) = a2Var(X) because he was aware of how 
to use a defined relationship to derive the result (e.g., pro-
ceeding from definition through manipulation to 
conclusion), an aspect of his syntactic knowledge. His 
actions also reflect a willingness to both acknowledge and 
address an unexpected response from a student. To acknowl-
edge and address is one of the three ways identified by 
Rowland and his colleagues (e.g., Rowland, Thwaites & 

Jared, 2015) in which teachers might handle contingent 
moments in the classroom (the other two are ignoring the 
response, and acknowledging the response but putting it 
aside). Most contingent moments in classrooms arise 
because some unexpected idea or query has been triggered 
from the original planned activities, placing these moments 
on the periphery of the original focus. It seems plausible, 
then, that the nature of a teacher’s horizon knowledge, and 
the ability to draw on that horizon knowledge ‘in the 
moment’, will play a significant role in the way that teachers 
respond to contingency in the classroom.  

In the post-lesson interview, Mr. McLaren was able to 
deploy his HCK with greater substance and clarity by artic-
ulating rich connections among the concept of variance and 
the algebraic processes involved in its calculation. He 
deconstructed the mathematics, during his reflection-on-
action, in ways that were not evident in the moment of 
teaching. What took place in the interview appeared to be an 
actual development of Mr. McLaren’s horizon knowledge, 
as he connected the visualisation of a distribution with its 
algebraic properties. It might be argued that this horizon 
knowledge was not in Mr. McLaren’s view or even accessi-
ble to him until he assembled the pieces himself from 
knowledge that he already held. Mason (2016) advocates 
that teachers must be consciously aware of the natural com-
plexity of classroom activity and be sensitive to “noticing 
opportunities in-the-moment to act freshly rather than habit-
ually” (p. 299). We saw that Mr. McLaren initially responded 
habitually (e.g., “We could look at why but I’m not too 
fussed”); after all the Mathematics Methods syllabus [2] did 
not require students to verify or prove such mathematical 
relationships. In the end, however, he did take up the oppor-
tunity to ‘act freshly’ by attempting to unpack the derivation 
on-the-fly, and was later able to articulate a more complete 
and sophisticated explanation. 

It is interesting to consider how the broader course con-
text, particularly high stakes external assessment, shapes and 
influences the enactment and development of senior sec-
ondary mathematics teachers’ knowledge at the mathematical 
horizon and the extent to which they are able to be mathe-
matical “with and in front of the learner” in Mason’s words. 
This discussion points to questions relating to how teachers 
perceive “being mathematical” in the senior secondary 
mathematics classroom and the extent to which the curricu-
lum, and the broader course context, enhances or constrains 
the growth of teacher knowledge. If the mathematics course 
and its assessment underplay the role of mathematical justi-
fication, then should the onus be on the teacher to be 
accomplished and creative enough to do—or know to do—
justice to the discipline of mathematics and the meaning of 
concepts? In this sense, Mr. McLaren acted courageously 
within a broader context that did not routinely prioritise the 
kind of mathematical justification in explaining the disap-
pearance of the ‘b’. We might wonder what would happen in 
next year’s iteration of the course, should another student 
ask, “What happened to the b?”. Would Mr. McLaren be 
able to provide a ‘better’ answer, perhaps by developing his 
interview response in a pedagogically suitable way or by 
doing some personal work on his content knowledge in 
deriving the result algebraically?  
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Conclusion 
We have examined a contingent situation in a senior sec-
ondary mathematics classroom that prompted the teacher to 
confront and reconsider his own thinking about specific 
mathematical ideas that were not directly addressed in the 
course but offered rich connections between the mathemati-
cal procedures and concepts at hand. The scenario 
contributes to the body of literature into the ways in which 
horizon knowledge can be fostered and developed, and the 
extent to which the broader curriculum and course context 
supports such growth. While it makes sense that the depth 
and scope of a teacher’s horizon knowledge guides the con-
struction of responses to contingent situations that arise in 
the classroom, crafting such responses in-the-moment may 
not be well-supported by the broader course context.  
Knowledge of what is typically included in, and excluded 
from, the examination appear to affect the mathematics-
related knowledge that a teacher might need or be willing to 
develop. Such contextual factors may reduce the extent to 
which teachers are willing (or able) to be mathematical with 
learners. Nevertheless, teachers who are responsive to stu-
dents’ queries, and alert to opportunities made visible by 
their own horizon knowledge, can deepen their repertoire of 
responses in teaching situations that involve ideas from the 
senior secondary mathematics curriculum. 
 
Notes 
[1]  There are some errors in what Mr. McLaren has written. The first term 
should be E((aX+b)2), and the expansion of this after the second equals sign 
should involve an additional term. However, these are not relevant to the 
points we want to make here. 
[2] Office of Tasmanian Assessment, Standards, & Certification, Mathemat-
ics methods. Online at https://www.tasc.tas.gov.au/students/courses/ 
mathematics/mtm415117-3 
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It’s all Chinese to me—and it 
makes a lot of sense: a letter to 
Dave and David 

ANNA SFARD 

Hi Dave, hello David, 
I just read your interesting accounts of what happened in 

two elementary school classrooms in England in which fifth 
grade children were being introduced to fractions according 
to approach known as the ‘Shanghai model’ (in issue 41(2)). 
Situated at a cultural crossroads, your story is a genuine tale 
of mystery. I am joining this conversation to add to your 
already quite extensive reflections on possible solutions. 

Like you, I puzzled over what happened in the two class-
rooms. In both cases, I was surprised by what was 
considered by the teachers as correct responses to the ques-
tion of whether the shaded rectangles in the drawings 
matched the given fractions (see Figures 1 & 2). I was taken 
aback by the fact that even when the shaded part appeared to 
be describable by the fraction ¼ or 3/5, the teachers would 
sometimes express the opposite opinion, pointing out that 
the big rectangle was not partitioned into identical segments. 

I was baffled also by the teachers’ initial resistance to your 
explanations, Dave. And then, after rereading your story 
several times, I started questioning our shared assessment of 
the teachers’ actions. The first doubt crept in when I read 
your assertion that the novice and expert teachers in the 
scene you had watched demonstrated “unquestioning accep-
tance of [the] received lesson plan”, which came “with the 
apparent authority of being based on a Shanghai approach.” 
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Figure 1. Drawings discussed by Dave, in connection with 
¼.

Figure 2. Drawings used in Ms Dai’s lesson, in connection 
with 3/5.
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And, my scepticism intensified when you, David, talked 
about the Chinese teacher, Ms Dai, who did a similar thing 
while speaking to a class in England about 3/5. Somehow, I 
found it hard to believe that these teachers’ deference to 
authority was strong enough to silence their own logic. Ms 
Dai in particular was an exemplary educator, appreciated 
enough to be sent to England as a presenter of ‘showcase’ 
lessons. If she were a mere rule-follower, what would it 
imply about the masses of her less outstanding colleagues? 
And, if ritualistic rule-following is so highly appreciated in 
China, how do we explain China’s high rankings both in 
TIMSS and PISA? 

Listening to Ms Dai and watching her actions [1] I won-
dered whether it would be possible to work out an 
alternative, hopefully more charitable, interpretation of this 
teacher’s actions. I assumed that if I only silenced my own 
spontaneous understanding of mathematical words and sym-
bols, I might, perhaps, find logic where there seemed to be 
none. In the present case, this meant renouncing my usual 
ways of describing the familiar situation and trying to retell 
the story of the Chinese teacher’s mathematising within her 
own mathematical discourse. The odds were that the ‘native’ 
lens would glue the apparently ill-fitting pieces together, 
combining them into a logical whole (I think, David, that 
this is exactly what you were trying to do while analyzing 
the structure of Chinese names for fractions, right?). Yet, 
undertaking this task meant venturing into a language I do 
not speak and into a culture about which I know close to 
nothing. It seemed as an unlikely undertaking, but I was 
determined to try, if only to escape the talk of deficit. 

I began by asking myself the question I usually try to 
tackle when unable to make sense of what a person is doing: 
Are the participants, in this case the teachers and the stu-
dents, really trying to accomplish the task I think they are 
performing? Or, in our case, when asking the question “True 
or false?”, what was the task Ms Dai might have had in 
mind? Was it possible that she was not an obedient follower 
of somebody else’s instructions but rather a person whose 
actions were rational and made genuine sense to her? I 
began my search for an alternative interpretation by scrutin-
ising the verbatim version of what Ms Dai and her students 
said. Here are the notes I made for myself while watching 
the first few moments of the relevant segment of the lesson:   

Ms Dai: ‘At first, let us review’. She presses on her 
clicker and three shapes with a fraction beneath each 
one of them appear on the screen; Figure 2a is consid-
ered first. Ms Dai continues: “True or false?… I will 
give you several seconds.’ After a 2-second pause, dur-
ing which some children start raising their hands, she 
exclaims, ‘Ready? The first one… Go!’” 

Later, I found it remarkable that in spite of the brevity of Ms 
Dai’s question, “True or false?”, her students were evidently 
able to understand her intention in a blink. But why was their 
shared understanding obviously so different from our own? 

You made your interpretation of Ms Dai’s question 
explicit when you completed her utterance with the brack-
eted words: “True or false? (Can these fractions show the 
coloured parts?)”. If I wanted to find a reinterpretation that 
would breathe some sense into the participants’ actions, I 

had to read Ms Dai’s question in a different way. Could Ms 
Dai’s query be about the truth of a different statement? 

Like you, David, I felt that the key to such alternative 
reading could be found in some disparities between Chinese 
and English. And it did not matter that in this case, the class-
room interaction was in English only. The important 
difference is between the English and Chinese speakers’ 
respective mathematical discourses and, in particular, that 
they use the same symbols in not necessarily identical ways. 
An ‘aha’ experience came when in my web search I came 
across a video in which the presenter mentioned in passing 
that the Chinese character 分, to be read as fēn and appearing 
in the name of every fraction, may signify both a thing and 
an action [2]. GoogleTranslate confirmed this claim, saying 
that, indeed, 分 may serve as a noun corresponding to the 
English piece, part, or section, and it can be used as the verb: 
divide, separate, partition. If so, is it possible, I asked 
myself, that the symbol 3/5 can be interpreted as referring not 
just to a product of an action but also to the action as such? 
This would be not unlike the kind of process-product duality 
of the arithmetic and algebraic notation, where expressions 
such as 3 + 7 or x2 can be read as referring both to an opera-
tion and to this operation’s outcome. This discovery seemed 
like a beginning of something, especially considering your 
remark, David, that Chinese fraction names are reflective of 
the order of operations one performs to find a part of the 
whole expressed in a given fraction. I now decided to take 
this comment even further by hypothesising that ideographs 
such as ¼ or 3/5 may be read in Chinese as descriptions of a 
certain routine operation. Yes, I thought, perhaps in Chi-
nese, a fraction may be read not just as a thing (a part of 
something), but also as a story of what was done to produce 
this part? Could, indeed, a fraction be also a coded prescrip-
tion for a routine? 

This sounded strange, but I was sufficiently intrigued to 
email Jinfa Cai, who is a mathematics education professor 
and a native Chinese speaker, asking him about “the ways in 
which the expression 三分之二 (sān fēn zhī èr, which is the 
Chinese name for 2/3) may be interpreted.” And I continued, 
“Can it be read as a brief narrative, say, ‘A thing has been par-
titioned into three parts of which two have been taken’, with 
the word partition, 分, interpreted as the action of dividing 
into equal parts”? The response arrived promptly, confirming 
this conjecture. “Based on my understanding, 2/3 is both a 
noun and a verb”, Jinfa was telling me. And he continued, “2/3 
is a noun as it is ‘a result of division, signifying a part of the 
whole or a number’, exactly as ‘two thirds’ is interpreted in 
English; 2/3 is a verb as it implies ‘to partition or to divide.” 
This meant that the story the fraction 3/5 could be telling, 
rightly or wrongly, about the drawings in Figure 2, might be 
“A thing has been partitioned into five congruent parts of 
which three have been shaded”. If this latter story was the 
object of Ms Dai’s question, then the students were right 
when calling this narrative false! With this new interpreta-
tion, things were falling into place and the sensibility of the 
teachers’ decisions, as well as their honour, could be saved. 
Thank you for helping me to see this possibility, Jinfa! 

Of course, this new interpretation was highly speculative, 
but I realized that I had a strong argument in its favor. Intro-
ducing fractions as stories of things done rather than of 
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products obtained resonated with my discursive (‘commogni-
tive’) view of the development of mathematical discourses. 
According to this approach, every mathematical object, 
including those to be eventually signified by fractions and 
called rational numbers, emerges in the discursive act of 
reifying a process. Before a new object is conceived, there 
must be a certain routine on already existing mathematical 
objects, in this case integers. Dividing a thing into congruent 
parts and taking a number of them is, indeed, a procedure 
that can be described and performed without a reference to 
fractions. As the learner becomes proficient in the routine 
and its multifarious applications, she may ‘compress’ her 
discourse by reification, that is, by replacing verbal phrases 
with nominal phrases. For this, she has to start using the 
symbols that served her so far as a shorthand for the rou-
tine—the fraction, in this case—also as a name of this 
routine’s product. 

If so, the ‘operational’ way of seeing fractions, possibly 
reflected in Ms Dai’s question, appears first and may be the 
only one accessible to beginners. The advantage of the idea 
of fraction-as-an-action is that unlike that of fraction-as-
number, it can be developed within the discourse of integers, 
or even just natural numbers, in the context of practices with 
which children are familiar. And it can be done even when 
something like “this part constitutes 3/5 of the pizza” is still 
beyond the reach of learners. For instance, an operation such 
as the one through which the drawing in Figure 2b was pro-
duced might constitute a solution to the practical problem of 
sharing a rectangular pizza between a family of two and a 
family of three. The idea of fraction-as-an-action is thus an 
ideal gangway from the child’s old discourse of natural num-
bers to the new one, that of rational numbers. And it is, 
clearly, advisable if one wishes to ensure that the required 
transition happens in a meaningful way. In the light of this 
interpretation, what you witnessed in the two classrooms, 
Dave and David, does not appear strange any longer. On the 
contrary, it seems natural. Accordingly, the Chinese teach-
ers, rather than being criticised, should probably be 
applauded for what they were doing. 

This is the end of my story. Well, not really. I may have 
sounded excited by my take on your puzzle, but I would not 
like you to think that I am certain of my solution. I have 
offered it merely as a conjecture that has yet to undergo crit-
ical scrutiny of people well acquainted with particularities of 

both the Chinese language and Chinese pedagogical 
approaches. But even if my hypotheses prove untenable, I 
will not regret joining this debate. This collective process 
forced me to revisit the old question of why it is so difficult 
to break out from our own ways of thinking. It is our well-
developed mathematical discourse that I am inclined to 
blame in the present context. “The limits of my language 
means the limits of my world” said Wittgenstein, and this 
example may serve as evidence. Yes, we are captives of our 
own ways of talking, with our words functioning like Trojan 
horses that carry with them armies of hidden assumptions 
and thwart the very possibility of escape. For instance, while 
reporting on the lesson like the one you saw, Dave, it was 
natural for us to say that, “there was a strong emphasis on 
the need for dividing shapes into equal regions” or that, “the 
students were asked to say whether each of the drawings in 
Figure 1 represented a quarter of the rectangle area.” But the 
words ‘equal regions’ and ‘quarter of the rectangle area’, 
indicate the assumption that the young learners already 
know what area is. Was it really their familiarity with the 
idea of area that was supposed to make them able to perform 
such tasks? The inner logic of the discourse of areas suggests 
that the reverse is more plausible—that it is only by compar-
ing the numbers of congruent parts into which one can 
partition different shapes that learners begin their travel 
toward the mathematical idea of area. Eventually, the num-
ber of parts obtained by partitioning a shape into elements 
identical with the standard one called ‘unit’ will be called the 
‘area’ of this shape. Could this concept be brought into being 
in any other way? 

Let me finish with a summarising reflection. What we col-
lectively did in this conversation may serve as a constant 
reminder that most of what can be seen from where we have 
been taken in our decades-long mathematical journey could 
not be seen from where this travel began. The interpretation 
I proposed here is the product of an attempt to return to the 
point of departure. Thank you for inviting me to this exciting 
time-travel. 

 
Anna 
 
Notes 
[1] Online at https://www.ncetm.org.uk/classroom-resources/lv-year-5-
shanghai-showcase-lesson/ 
[2] Online at https://www.youtube.com/watch?v=NSal_TlRpxQ
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In the telephone keypad the numbers 1–9 are arranged so that the num-
bers in each row and column are in increasing order (read from top to 
bottom and left to right). How many such arrangements are there?  

1 2 3  
4 5 6 
7 8 9
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