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Over a long period of time, I have been observing students
involved in demonstrating theorems. [1] The demonstrations
were intended to be individual activity, but were carried out
within a classroom setting and were therefore able to be con-
sidered as social activity. I noticed that, although there were
many typologies of more or less spontaneous behaviour pre-
sented to satisfy the teacher’s request (i.e., a pattern more or
less bound to Aristotelian or Megarian-Stoic logic), some stu-
dents’demonstrative modality could have been thought about
in a different way from the one expected by the teacher. This
modality brought clearly to mind quite a different kind of
logic, highlighting certain factors such as the use of examples
or the preliminary enunciation of the thesis.

The nyaya approach described in this article shows that
other cultures have produced intellectual mechanisms of
‘truth’ generalization and predication different from Aris-
totle’s logic (see, for example, Needham, 1959; D’Amore
and Matteuzzi, 1976; and more recently, Sarma, 2005;
Sarukkai, 2005). Both the ideas of collecting evidence of the
implicit and unaware use of this logic, along with an analytic
perspective, gave rise to this article. I initially introduce the
basic elements of this logic, followed by the presentation of
three illustrative cases. I finally present some concluding
remarks and reflections.

I explicitly want to emphasise that my purpose here is
not to substitute one logical model for another in school edu-
cation. From the explorations I have conducted and relate
here, it emerges that, in order to reason properly, students
have a strong tendency to use particular cases in order to
‘read’ and ‘see’ the general in them. There is evidence of a
dialectic between generalisation (or abstraction) and con-
cretisation (or specialisation) that must necessarily be taken
into account while teaching.

Even after this piece of research, I do not believe that
these students think in exact accordance with nyaya logic.
Nevertheless, having recourse to this logic for the analysis of
students’ mathematical reasoning highlights the fact that any
didactic analysis presupposes, in one way or another, a
frame of reference: it is possible to use several logical
frames to account for the students’ deductive behaviour.
Each interpretation of deduction presupposes a logical frame
of reference, and deviant behaviour is judged only relative to
the particular frame of reference considered.

Some characteristics of the nyaya philosoph-
ical school 
Although European syllabi seldom take into account the
study of oriental philosophies, I believe it is fairly well

known that in India a philosophical doctrine called nyaya (in
Sanskrit) opposed the classic Buddhist school. (Nyaya liter-
ally means logic, so it is redundant to call the logic of that
school nyaya.) Nyaya considered rational speculation to
comprise a fundamental basis for a coherent doctrine of
knowledge, coming close to what we would now call deduc-
tive logic, relinquished by Buddhist philosophy.

The basis of the nyaya school was empiricism: as we shall
see, such logic was consequently quite different from the
Greek Aristotelian model that prevailed throughout the
Western world at the time. Among other things, Aristotelian
logic also shaped, in a form that still persists today, the way
of handling mathematical demonstration. However, while
this is certainly true at an academic level, it is not so for
young students at school. [2]

By denying a transcendent principle of the universe (typ-
ical of many Indian doctrines), nyaya built an atomistic
physics, within a realistic mould, that supported the exis-
tence of nine primordial substances and a system of sixteen
objective categories immanent within the real. Its gnosiol-
ogy (philosophy of knowledge) was based on a unity
between purely sensory knowledge (relative to the external
world) and the conversational one (relative to no matter
which communicative language). The nyaya doctrine thus
acknowledged a form of existence where communicable
concepts are also real entities.

The nyaya school claimed the hegemony of four means of
gaining knowledge (pramana):

• witness/testimony
• analogy
• perception
• inference.

I will examine each of these concepts in more detail:
Witness (sabda) deals with what is reliable from handed-

down communication, written or oral. This would include
such things as God’s revelations, handed-down history,
prayers and sacred poems.

Analogy (upamana, also translated as comparison or
equivalence) is the way of reasoning that defines an object in
terms of resemblance to others. Note that nyaya analogy
classifies objects according to categories or classes of ana-
logues, distinguishing between two classes on the basis that
they do not have analogous terms. Since an analogy between
existing objects depends on considerations regarding the
object itself (and therefore these are not abstract considera-
tions but classificatory and experimental ones), this form of
knowledge relates to some present-day concepts also found
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in mathematics. We could refer to geometry, with its closely
related type and proximal genus and specific differences in
definitions. Or we could mention more developed ones here,
so-called analytic definitions that characterise a class of
objects through the quotient construction: in other words, by
means of an equivalence relation.

Perception (pratyaska) is the relation between the visible
(that which we see with eyes) – or at least with the senses
(a relation that is produced by the contact of the sensory
organ with the object) – and the image we have of that
object. I avoid considerations regarding the six senses that
nyaya philosophers attributed to human beings, highlighting
instead the importance ascribed to the sixth sense, the intel-
lect (manas), because of the regulating and mediating
function this ‘organ’ has, with respect to the other five.
According to nyaya philosophy, communicable concepts
acquire their own reality in contrast with Buddhism that
assigns them the role of a mental image.

Finally, I consider inference (anumana) that in the nyaya
school represents the sublime stage. The nyaya syllogism (so
called because its form is apparently similar to the Aris-
totelian one) is not widely known. Nyaya distinguished five
assertive elements in its syllogism (compared with three in
an Aristotelian syllogism):

• the statement (pratijna) (not proved; the enuncia-
tion we want to prove)

• the reason (hetu)
• the general proposition or enunciation (udaha-

rana), followed by an example
• the application (upanay), also called the second

statement
• the conclusion (nigamana).

The following example is a classic nyaya (as well as
Socrates’s pseudo-syllogism for Aristotelian logic):

1. object A moves (statement);
2. because of a force applied to it (reason);
3. whenever we apply a force to an object, the object

moves (general proposition); for example: if oxen
pull a cart, the cart moves (example);

4. a force is applied to object A (application);
therefore:

5. object A moves (conclusion).

It is relatively easy to put this reasoning into symbolic form.
Before I proceed to do so, here is a convenient formalism:

Let A, B be given objects, and X a general object;
P(X): the open predicate statement, “X moves”;
F(X): “a force is applied to X”.

The open statement F(X) is always true if F(A) is experi-
mentally verifiable whenever we replace the variable X with
a constant A (we experience its truth through our senses, at
least according to nyaya’s empiricist interpretation).

Nyaya’s syllogism can be formally interpreted as follows:

Classic Buddhist critics argue against the first and the sec-
ond steps, because they do not belong to true reasoning but
can nonetheless be included in the thesis. I would like to
emphasise that this is frequently carried out in our common
way of reasoning: for example, in didactic action. We point
out the final object of the proof right from the beginning:
otherwise, it would be impossible to organise that kind of
reasoning exactly. I shall return to this issue later on.

Buddhists wrongly refused the fifth step, a sort of modus
ponens extended to predicate calculus, a logically correct and
essential operation for that type of syllogism. The relative
formal linguistic expression is:

{(∀X) [(F(X) � P(X)) ∧ F(X)] � P(X)} � {[(F(A) �
P(A)) ∧ F(A)] � P(A)}

The logical analysis of language, related to the close con-
nection assigned to the dichotomous language-object of
thought, leads to an exact language criticism similar to that
of rhetoric in modern times.

According to nyaya, the enemies of correct deduction and
speaking are:

• ambiguity (chala), resulting from an improper use
of a term (i.e., a wrong use of analogy)

• unfinished thinking (jati), looped speech without
content

• absurd arguments (nigrahastama), adopted by
someone without logic: his fate is to be defeated
dialectically by someone who operates with logic
and rational arguments.

Nyaya philosophers studied the instances in which their syl-
logisms led to sophisms. Here are the principal cases of this
harmful reduction:

• an incorrect correspondence between the syllo-
gism’s constituent parts, therefore there is no
relationship between terms

• an intrinsic absurdity that appears in a term stating
the opposite to that which it should affirm

• an explicit absurdity due to the contrast between
two terms of the syllogism that exclude each other

• the lack of a proof or a test of one of the terms sup-
porting the reasoning

• the falsity of the major term, the non-existence of
the object [3] we are referring to or the attribution
of false properties to it.

It is evident how nyaya differs from the Aristotelian logic,
since its arguments are based upon empirical tests and on con-
tact with the external world. [4] Nyaya regards not only objects
and facts but also thoughts as real entities (I use the word ‘real’
and not ‘existing’ to avoid any comparison with Platonism).

Application: 4. F(A) from the general 
case, we return to 
the case we are 
studying: a force
exerts an action
on A

Conclusion: 5. P(A) A moves

Statement: 1. P(A) unproved statement
Reason: 2. F(A) cause for P(A)
Thesis: 3. (∀X) [F(X)�P(X)] general proposition

F(B)�P(B) example
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The current distinction between propositional logic and
predicate logic fails to acknowledge the actual historical
development of the discipline. Propositional/enunciative
logic was not as prominent in Aristotle’s works as it is in
those of contemporary logicians. It derives from the studies
of Megarian and Stoic philosophers and, paradoxically,
established itself later, whereas predicate logic is essential to
the understanding of Aristotle’s syllogisms from a modern
point of view. In the classroom, in high school logic lessons,
teachers mainly use propositional logic and they try to apply
it, as an illustration, to geometrical proofs, although it is not
always completely suitable. For example, such proofs often
require quantifying over variables, an action that does not
make sense in propositional logic.

An in-depth analysis of the manners of reasoning and
their logical modelling both by experts (mathematicians,
university teachers) and by university students (first year)
can be found in the work of Durand-Guerrier and Arsac
(2003). Among others things, the authors indicate different
conceptions of the use of and need for quantifiers in proofs
by both experts and students.

Classroom arguments and proofs
For various reasons, the three examples I propose do not
always correspond perfectly to the nyaya logic, although they
are very similar. What is particularly interesting is to study
the logic that the students employ in the face of the demon-
stration, since this can often prove to be a logic quite different
from that of Aristotle. Three examples of this follow.

The case of Filippo

I would like to highlight the role of reasoning in the case of
Filippo, a fourteen-year-old student faced with the following
exercise (written on a sheet of paper that was given to him).
Filippo’s responses were videotaped. In the following tran-
script, I add comments on what he did in square brackets.

Prove that if a triangle has two congruent sides then it
also has two congruent angles.

Filippo draws a scalene triangle and then erases it. After that,
he draws an isosceles triangle using the side different in
length from the other two as a base, i.e., parallel to the short
side of the page nearest to him (see Figure 1).

At this point, he puts letters on the vertices (see Figure 2):

During this activity, he utters an unintelligible sound as
if he were concentrating. Then he looks at the researcher
and asks him:

F: Do I have to put in the angles?
R: What do you mean?
F: Do I have to write them?

It is clear what he is trying to say but I pretend not to under-
stand.

R: Do what you consider correct.

Filippo then adds the names of the base angles to the draw-
ing (see Figure 3). He looks at the researcher satisfied,
looking for approval.

R: Go ahead.

Filippo carefully reads the piece of paper where the text of
the assignment is written, looking at his drawing now and
then. Then he exclaims:

F: Alpha is equal to beta. Yes, alpha [he indicates it
with the point of the pencil] is equal to beta [he
indicates this second angle now with the point of
the pencil].

Then he looks at the researcher.

R: Is it what you want to prove or where you start
from?

Filippo remains silent. He reads the text again, looks at the
drawing, reads the text again and says:

F: No, no, I don’t start from here; this is what you are
asking me.

R: So?
F: I know that AB is equal to AC; here [he points with

the point of the pencil to the two sides on the draw-
ing, sliding the pencil precisely over both sides].
These two are equal.

The researcher keeps quiet.

F: If these two are equal [he points to the sides, but
only touching a single point on each of them with
the pencil] and also these must be necessarily equal
[similarly indicating a point inside each angle],
well then the angles must be equal. 

R: Ah, yes?
F: How can it not be so? It must be like this, if AB

is 3 and AC is 3, then alpha and beta will be, let’s
say, 60.

R: Why 60 degrees? Couldn’t they be 40 degrees?
F: Yes, I believe. 60 degrees just came out, but I believe

it could be anything [he refers to the amplitude].

Figure 1: The initial isosceles triangle.

Figure 2: Isosceles triangle with letters on the vertices.

Figure 3: Angles added.

α β
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Filippo looks at the researcher as if he has concluded the
exercise.

R: So? Can we conclude the exercise? What can you
affirm?

F: I believe that whenever the sides are equal, also
these two angles here, the ones on the bottom [he
touches the two angles with the point of the pencil]
must be equal. Therefore, I believe it is like this,
what I said is correct. The two sides here of the tri-
angle [and he touches inside the triangle] are
certainly equal and therefore also the angles, or not?

If we examine Filippo’s argumentative/demonstrative
behaviour, he follows almost exactly the steps outlined by
nyaya philosophers:

Indeed, Filippo did not prove the proposed theorem, but
he argued as if taking the implication (AB = AC implies
angle B = angle C) for granted. I am not examining here the

correctness of the assignment’s development: I am examin-
ing Filippo’s spontaneous behaviour in coping with the task.
His main concern was not to carry out the Euclidean proof,
but to convince himself (or the researcher) that the assign-
ment’s written text corresponded to reality.

In truth, Filippo’s argument is only one instance taken
from about ten interviews verifying the idea that students’
argumentative/demonstrative behaviour in spontaneous sit-
uations is sometimes empirically closer to nyaya rather than
to Aristotelian or StoicMegarian logic.

Among all the fifteen- and sixteen-year-old students who
were interviewed, Filippo provided one of the clearest
examples, because, in my opinion, he goes through all the
nyaya steps. But many other students tend to behave in this
way, even if the more academic (D’Amore, 1999) ones are
less inclined to follow such spontaneous behaviour. They
try, at least at the beginning, to, for example, extend sides
AB and AC somehow or to draw segments, according to
what they remember having seen or done in the past. But,
in a more or less evident and recognisable way, many stu-
dents follow the nyaya steps, looking for an example at step
3 or being satisfied merely by a drawing, without necessar-
ily displaying measurements, as in Filippo’s example.

Giada’s ‘double’ example
Giada, fifteen-years old, is in ninth grade and considered to
be ‘gifted’ in mathematics by her teacher. I offer the follow-
ing proof (taken from her textbook exercises):

Given the quadrilateral ABCD, PQRS are the mid-
points of its sides; join these points; prove that the
quadrilateral you obtain is a parallelogram.

Giada makes a drawing (see Figure 4):

G: Here it is.
R: Yes?
G: I did it badly.
R: No, no, it is very clear like this.

Giada reads the text again.

G: Then PQRS must be a parallelogram…

A moment of silence.

G: ...yes, because [she writes on the page, speaking
aloud at the same time] PQ//RS and PS//QR. Yes.
[She looks at the interviewer.]

R: Ah.
G: Yes, no, it’s like this. When the two sides of a

square [she means a quadrilateral] are two by two
parallel, then the square [but she means quadrilat-
eral] is a parallelogram. [Giada looks at the
interviewer then at her drawing.]

Giada puts the pencil into her mouth, and then she draws
(see Figure 5):

saying at the same time:

G: See, this one, for example, has the sides two by two
parallel [she touches two by two the opposite sides
with the point of the pencil].

R: Here it is.
G: In our case, it works because PS is parallel to QR

and also PQ to PS, not to SR.

Silence.

G: Therefore it is true: PQRS is really a parallelogram
[doubting, she looks at the interviewer].

R: OK, but how can you tell that PQ is parallel to RS?

Giada looks at the initial drawing.

G: Ah, oh, I have to show that PQ is parallel [she
starts with an affirmative tone, later it changes to

1. Alpha is equal to beta. Yes, alpha
is equal to beta. P(A)

2. I know that AB is equal to AC;
here, these two are equal. F(A)

3. If these two are equal, also these,
well the angles must be equal. (∀X) [F(X)�P(X)]
If AB is 3 and AC is 3, then alpha
and beta will be, let’s say 60. Example

4. The two sides here of the triangle
are certainly equal. F(A)

5. and therefore also the angles
[are equal]. P(A)

Figure 4: Giada’s initial drawing.

Figure 5: “Sides two by two parallel.”
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an interrogative one] ...to RS? Yes, parallel, PQ
parallel to RS.

She reflects for a while.

G: Well, because I believe both are maybe parallel to
AC [she draws AC on the first figure, the one at
the beginning (see Figure 6)].

G: Yes. I remember. It is because there is the triangle ACD,
and so S and P are those midpoints. You can see it.

R: Well. Therefore?
G: [It sounds like she is quoting a set phrase.] If two

lines [she means straight lines] are both parallel to
a same line then the two lines are parallel to each
other. One can see it here also. [with the tip of her
pencil she draws over SP, RQ and CA again.]

R: Ah.
G: Yes [She reflects] Well, it is the same for the other

two. [she means that analogous reasoning applies
to RS and PQ with regard to BD.]

R: Which ones?

Giada silently goes over the three segments RS, PQ and BD.

G: Yes, they are all parallel. SP, RQ, AC and then SR,
PQ, BD. But also… I have it! This was the thesis,
or not?

I called Giada’s example double because, in my opinion, she
uses the nyaya model twice.

In the first part:

The interviewer asks for a reason for the statement PQ//RS.
Here starts the second part:

Without considering the improper use of terms, Giada shows
a certain mastery of mathematics; it is well known that in lan-
guage’s oral form it is common to say one thing for another
(such as “square” instead of “quadrilateral”, “line” instead
of “straight line”), but this does not compromise the judg-
ment of her action. Giada fulfils the assignment well, using
a way of arguing easily ascribable to nyaya behaviour.

Pitto’s example
‘Pitto’ is a classroom nickname for Pietro that everybody
uses, including the teacher. This fifteen-year-old boy is one
of the most popular students in his ninth grade class. I pro-
posed this assignment to the whole class:

The sum of three consecutive natural numbers is cer-
tainly divisible by three.

This is an easy, traditional exercise that requires various
strategies.

I will not give an account of this experience, since I have
another specific purpose. Needless to say, as the well-known
research literature on the subject confirms, most of the stu-
dents only proposed examples. (There was also a curious
one –1, 0, +1, which did not adhere to the requirement to use
natural numbers; this example raises the eternal question as
to whether 0 is divisible by 3).

Of all of the interesting interviews, Pitto’s stands out as
most suitable for this case study.

Pitto starts by writing a + b + c and looks at the
researcher.

P: I must perform the sum…

R: Of what?
P: Eh. Of three natural numbers.
R: Any?
P: Yes.
R: Are you sure? Read carefully.
P: Consecutive. As, for instance, it could be 5, 6, 7,

like this? [He writes 5 6 7 spaced out.]

Figure 6: AC drawn on the initial diagram

1. PQRS must be a parallelogram P(A)
2. because PQ//RS and PQ//QR.

Yes. F(A)
3. When the sides of a square

[quadrilateral] are two by two
parallel then the square
[quadrilateral] is a parallelogram. (∀X) [F(X)�P(X)]
Here, for example, [drawing of a
rectangle that should be a generic
parallelogram] Example

4. In our case it works because PS
is parallel to QR and also PQ to
SR F(A)

5. Therefore it is true: PQRS is
indeed a parallelogram. P(A)

1. I must show that PQ is parallel
to RS; yes, parallel, PQ parallel
to RS. P(A)

2. because both maybe, because
I think they are parallel to AC.
Yes, [...] because there is the
triangle ACD and so S and P
are those mid-points. F(A)

3. If two lines [straight lines] are
both parallel to the same line
[straight line], then they are
also parallel to each other. (∀X) [F(X)�P(X)]
I can see it here Example

4. the same for the other two. [...]
Yes, they are all parallel, SP, RQ,
AC and then SP, PQ, BD. F(A)

5. But also... I have it! This was
the thesis, or not? P(A)
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R: Yes. How can you recognise three consecutive
numbers? Think in general... What would you call
a number in general?

P: Ah, yes, n. It is like saying [meanwhile he writes]:
n, then n + 1 and then n + 2.

He stops and writes the sum: n + (n + 1) + (n + 2), exactly
in this way with the correct brackets

R: Ah, yes like this it works out well. So?
P: [He reads the text again.] Therefore this [he indi-

cates n + (n + 1) + (n + 2)] is divisible by 3. Well,
5 plus 6 plus 7 [and he puts the + signs between 5
and 6 and between 6 and 7 in the previous text]
which yields 11 and 7, 18. [He continues writing
= 18]. 18 is divisible by 3. Because there is a t such
that n + (n + 1) + (n + 2) is 3t, like before with t
equal to 6.

Pitto looks at the interviewer who nods.

P: If I always find t it would be [he writes from the
beginning] n + (n + 1) + (n + 2) = 3t and therefore
it is always [he touches with the point of the pen the
first side of this equality] n plus n + 1 plus n + 2
divisible by 3. For example 1 plus 2 plus 3 is with
t equal to 2.

R: Very well. How can you prove what you want?

Pitto writes one more time n + (n + 1) + (n + 2) and he tries
next to perform semiotic transformations. Needless to say,
he first writes n2 + 1, but he corrects himself immediately
pronouncing a resolute “no” and precisely erasing his
attempt. He then writes 2n + 1 + n + 2 and says:

P: …it yields 3n + 3. I have it, here there is 3.

He writes= 3(n + 1). While he is hitting the 3 with the point
of his pen he looks at the interviewer.

R: Well we have it.
P: Eh, yes, yes.

On the sheet of paper, starting from the (n + 1) that appears
on the second side of the equality, he writes = t sideways.
Pitto is satisfied and he remarks:

P: Ah, cool, look at it [he touches the equality with the
point of the pen and says] It is always 3 for the one
in the middle.

Looking more closely at Pitto’s work, whose argumentation
is undoubtedly appropriate to nyaya behaviour:

In this schematically summarised argument, it is evident
how Pitto needs to “anchor” his reasoning even more.
Examples, typical of nyaya reasoning and rejected by the
Aristotelian and Megarian-Stoic thought, are used to justify
not only step 3 but also steps 1 and 2. This reassures Pitto
and leads him to a correct starting point for his argument.

Conclusions
The aim of this work is to show how demonstrative behav-
iour, or, in general, argumentative behaviour of sufficiently
evolved students is not only bound to Aristotelian and
Megarian-Stoic typologies, as historical and traditional
approaches would suggest.

The use of a scheme at least analogous to nyaya by these
students does not necessarily mean that they simply do not
carry out a proof, but rather that they fail to follow the Aris-
totelian design. Some of them do perform a proof (Pitto),
others not completely (Filippo), but it is interesting to point
to the common existence of steps 1 and 2, which give mean-
ing to the quantified general statement (thesis). Is the role
played by steps 1 and 2, among the students, the same as in
nyaya? Or is it solely a question of “anchoring” to examples,
and therefore simply an application of the general statement
to specific cases? Now that I have used this logical model
to interpret behaviour that all too often could be considered
incorrect (because it does not adhere to another, more estab-
lished, model), I can proceed with my analysis.

For the time being, I want to reflect on areas that seem to
have some didactic interest. This investigation shows at least
one feature, i.e., that the adherence to Aristotelian logic as a
model for natural proof cannot be taken for granted and any-
way is not unique. My purpose here is in no way to substitute
one logical model for another – I want to open the analysis
of learning how to prove to other possible schemes.

In fact, I share Luis Radford’s (1999, 2004) general idea
that a culture’s mode of thinking has to pay tribute to the
activities shared by its elements, since it is the human activ-
ity that generates knowledge. Instead of establishing a
specific logical method as a model for human thinking, it is
preferable to analyse socio-cultural activities and observe
how thinking takes shape as a reflection of what individu-
als do during such activities.

Moving in the framework of a typical methodological
analysis drawn from the highlighted cases of the studied
subjects, the shifts from several particular cases to univer-
sal quantification appear to be an exaggerated interpretation
and anyway, it is not a spontaneous activity of the subject.
For example, when Filippo talks about “these two” he cer-
tainly refers to two particular cases and the generalisation
we see in his words stems from the fact that he analyses the
possible cases and not from a process of generalisation. But
this fact exactly strengthens the idea of a pragmatic adher-
ence, more to nyaya rather than to first-order predicate logic.

Finally, in semiotic terms, there are transformations at
the level of denotation (common to the behaviour of all the

1. n + (n + 1) + (n + 2) is
divisible by 3 P(A)
5 + 6 + 7 yields […] 18.
18 divisible by 3 Example of P(A)

2. Because there is a t such that
n + (n + 1) + (n + 2) is 3t F(A)
Like before when t was 6 Example of F(A)

3. If I always find t then it would
be n + (n + 1) + (n + 2) = 3t and
therefore n + (n + 1) + (n + 2) is
always divisible by 3 (∀X) [F(X)�P(X)]
For example 1 + 2 + 3 is with
t = 2 Example

4. [n + (n + 1) + (n + 2)] that yields
3n + 3 […] = 3(n + 1) [= 3t] F(A)

5. It is always three for the one in
the middle [3(n + 1)] P(A)
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examined subjects) that the same subjects have not taken
explicitly into account. The result is that expressing state-
ments within predicate logic, using quantifiers, could take
place without them being aware of this. This kind of reflec-
tion requires further study, for example involving students in
the analysis of their own demonstrative strategy.

From a didactic point of view, on the one hand we are led
to put back into perspective the idea that the only demon-
strative model is the Aristotelian enunciative-predicative
one; on the other, we are led to provide tools to analyse
social and cultural activities shared in the classroom. Since
the objective of the didactic action is the control of argu-
mentation and demonstrative skills reached by students
during high school, we cannot avoid taking into account the
results discussed above.
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Notes
[1] Recently, various authors have made contributions to the study of the
complex phenomenon of learning what the French refer to as démonstration
(see Bachaleff, 2004 for an important presentation of the characteristics of
various recent research studies in this field). The positions vary signifi-
cantly, from more formalist (Duval, 1991, 1993; Duval and Egret, 1993)
to quasi-empirical, in the manner of Lakatos (Hanna and Janke, 1996).
The same terminology gives rise to different interpretations. Proof in Eng-
lish and démonstration in French express different meanings, such that
some researchers prefer to call a ‘démonstration’ a ‘mathematical proof’.
For a more detailed examination of the question of use of terminology, see
Balacheff (2004) and the relevant bibliography.

Several other works have shown the huge difficulties that students
encounter in using quantifiers, even solely in regard to geometry (e.g.,
Durand-Guerrier, 1999). Blaise Pascal (1656/1985), in referring to what we
now would call ‘quantification’, also noticed that we tend to anchor rea-
soning to general examples in proofs. The common logical framework in
these situations is the propositional calculus and the initial elements of first-
order predicate calculus (Durand-Guerrier and Arsac, 2003).
[2] For historical reference, prince Gautama (the Buddha, the awakened
one, the enlightened one) lived in the sixth or fifth century BC. Therefore
the religion, named after the name of its founder, clearly developed before
Aristotelianism in Greece (third century BC). By contrast, the first philo-
sophical book on nyaya (Gautama’s Nyaya Sutra) dates from the first

century AD. The philosophy developed in the following centuries with the
renowned Vatsyayana’s commentaries (fifth century AD), Uddoyotakare’s
commentaries in the sixth or seventh century AD, up to what could be con-
sidered a new evolution of nyaya, headed by the philosopher Gangesa, in
the thirteenth century AD.
[3] Recall Aristotle’s point of view regarding the empty set and Gergonne’s
solution to this issue (D’Amore, 2001, pp. 17-54).
[4] Triumphant Greek philosophy (Socrates – Plato – Aristotle) not only
failed to recognise this, but also deeply rejected it. Greek philosophers
continued to reject doxa (opinions), supporting instead Parmenides’s
aletheia. Sophists, subdued by Aristotle’s triumph and Plato’s previous
dialogic arguments, deserve a different treatise.
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