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YOUNG STUDENTS’ FORMS OF  
REASONING ABOUT MULTIPLE  
QUANTITIES 

NICOLE PANORKOU, ERELL GERMIA

Justin, a Grade 6 student, is exploring the simulation model-
ing the water cycle (Figure 1). It allows him to change the air 
temperature, mountain temperature, land temperature, lake 
temperature and relative humidity, and to observe the effects 
on quantities such as the rate of evaporation from the lake, the 
amount of precipitation (rainfall) and the amount of runoff. 

Justin moved the lake temperature slider and argued that 
“the lake temperature if it’s like very high it can evaporate, 

and the rain that falls could be like more” (Figure 2). Justin’s 
statement shows that he is coordinating the change in three 
quantities: lake temperature → evaporation → precipitation. 

In this article, we define forms of students’ reasoning 
around variation, especially in cases like Justin’s in which 
multiple quantities vary together, and we show how students 
as young as in Grade 6 can engage in complex forms of vari-
ational reasoning in suitable contexts. 

Figure 1. The Water Cycle simulation.

Figure 2. When the temperature increases, there is more evaporation (dots) and consequently there is more rain and more runoff.
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Variation, covariation and multivariation 
Quantities, as described by Thompson (1994), are measur-
able conceptual attributes constructed by an individual when 
conceiving a quality of an object. For instance, during the 
exploration of the Water Cycle simulation students identified 
quantities such as ‘humidity’, ‘air temperature’ and ‘moun-
tain temperature’. In constructing relationships between 
quantities, Thompson and Carlson (2017) distinguished 
between asynchronous variation which involves envision-
ing one variable changing, then the second, then the third, 
and synchronous variation which involves reasoning about 
the quantities changing simultaneously. Envisioning 
changes in one variable’s value as happening simultaneously 
with changes in another variable’s value is what Thompson 
and Carlson refer to as covariational reasoning. For instance, 
while exploring the Water Cycle simulation, Kelly dragged 
the relative humidity slider to change the value from 0% to 
100% and observed that “the higher the relative humidity, 
the lower the rate of evaporation”. Reasoning about varia-
tion and covariation of quantities has been studied 
extensively by the mathematics education community as a 
way of supporting students’ learning of rate of change (e.g., 
Johnson, 2012) and functions (e.g., Paoletti & Moore, 2018). 
However, Thompson and Carlson argue that most of the 
studies examining students’ variational and covariational 
reasoning use those constructs to frame their investigations 
but do not contribute explicitly to the development of the 
definitions of these constructs. 

In analyzing the data from our study (e.g., Basu & 
Panorkou, 2019; Panorkou & Germia, 2020), we noticed that 
students not only reasoned covariationally but also reasoned 
about more than two quantities changing simultaneously, sim-
ilar to Justin’s reasoning above. This finding opened the 
opportunity to make a significant contribution to the field since 
the only prior research study characterizing students’ multi-
variational reasoning focuses exclusively on undergraduate 
mathematics education (Jones, 2018). Indeed, although the 
mathematics of change and variation are important for students 
in order to understand various environmental, economic and 
social trends of the twenty-first century, most of these concepts 
are introduced to students at higher grade levels, by which 90% 
of students are already filtered out by prerequisite classes 
(Roschelle, Kaput & Stroup, 2000). As a result, a large number 
of students do not have opportunities to engage with these con-
cepts, in spite of the importance of this type of mathematics. 

 
Sixth-grade students’ forms of reasoning 
about multiple quantities 
In this article, we discuss our characterizations of students’ 
multivariational reasoning by presenting examples from data 
gathered from a series of whole-class design experiments 
(Cobb, Confrey, diSessa, Lehrer & Schauble, 2003) con-
ducted in different sixth-grade classrooms (11–12 years old) 
in a large suburban school district with a heterogenous pop-
ulation in the Northeast of the United States. In the district of 
the participating schools, 46% of the students are classified as 
economically disadvantaged and have an average mathemat-
ics proficiency of 29.3%. Three design experiments focused 
on examining scientific phenomena using interactive simula-
tions: two on the water cycle and one on the rock cycle. 

Similar to Jones’ (2018) characterizations of multivaria-
tional reasoning by undergraduate students, in analyzing 
data from our sixth-grade students we identified forms of 
nested, independent and a form of partial dependent multi-
variational reasoning. In addition to demonstrating examples 
of these forms from our data, we also present some new mul-
tivariational forms that were not identified by Jones but were 
present in our data, such as nested and transitive, integrated 
and connective multivariational reasoning. We also discuss 
how the science context played a key factor in students’ con-
ceptions of synchronous versus asynchronous variation. 

Nested multivariational reasoning 

Jones (2018) defined nested multivariation as involving a 
chain of related dependencies. For instance, Justin’s statement 
that “the lake temperature if it’s like very high it can evapo-
rate, and the rain that falls could be like more” reflects nested 
multivariation reasoning. We interpret his reasoning to show a 
sequential image of change illustrated in Figure 3: that the 
change in lake temperature (quantity a) impacts the rate of 
evaporation (quantity b), and that the change in evaporation 
(quantity b) affects a change in precipitation (quantity c). 

Nested and transitive multivariational reasoning 

In their nested multivariational reasoning, students some-
times reasoned transitively, in a similar manner as 
recognizing a transitive property. For example, when stu-
dents were asked whether a higher rate of evaporation would 
lead to more runoff, Ian stated that more evaporation would 
“more likely” lead to more runoff because “if there is higher 
evaporation, there is more rain. If there’s more rain, there is 
more runoff”. We interpret Ian’s reasoning to illustrate a 
form of nested and transitive multivariational reasoning, 
because he used the relationship between evaporation and 
rain, and the relationship between rain and runoff, to reason 
explicitly about how a change in evaporation (quantity a) 
causes a change in runoff (quantity c) (Figure 4). 

Figure 3. Illustration of nested multivariational reasoning 
expressed by Justin.

Figure 4. Illustration of nested and transitive multivaria-
tional reasoning expressed by Ian.
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Independent multivariational reasoning 

Students also exhibited reasoning similar to Jones’ (2018) 
definition of independent multivariation as involving at least 
two quantities that are independent from each other and 
affect the change in another quantity. For example, while 
exploring the Water Cycle simulation, we prompted the stu-
dents to make the precipitation in the form of snow by 
manipulating only the air temperature and the land temper-
ature, and then asked them, “What conditions will release 
more snow?” Chloe and Justin worked as a pair to explore 
the conditions of snow and reasoned that “We need both of 
them to be cold” (Figure 5). To explain her reasoning, 
Chloe decreased the value for the air temperature by drag-
ging the slider to the left, showing that the cloud was 
releasing a mixture of rain and snow, stating, “if you just 
move for air temperature, it only snows a little bit”. Next, 
she decreased the value for the land temperature by drag-

ging the slider to the left and showed on the simulation that 
the cloud released more snow which accumulated on the 
ground. She then explained, “But if you put it with a land 
temperature, it starts to accumulate in the ground and it pro-
duces more”. 

We interpret Chloe’s reasoning to show independent mul-
tivariational reasoning because she coordinated the change 
of land temperature (quantity a) and air temperature (quan-
tity b) as unrelated independent quantities with the change in 
snow (quantity c) as the dependent quantity (Figure 6). Her 
statements also show that it was her interaction with the sim-
ulation and our questioning that helped her to notice the two 
changing quantities at first, air temperature and amount of 
snow, and then to notice the change in snow when a third 
quantity, the land temperature, was added to the existing 
covariational relationship. 

Integrated multivariational reasoning  

We also noted instances where the students merged more 
than one form of multivariational reasoning in their state-
ments. For instance, after students explored the Water Cycle 
simulation, we asked them to draw and explain their model 
of the water cycle. Lorna then reasoned about five quanti-
ties, namely relative humidity, air temperature, rain 
(precipitation), runoff and amount of water going into 
aquifers (infiltration): 

Lorna So, this is when the relative humidity and 
the air temperature are above 32 degrees. 
So then, there’s gonna be a lot of rain and 
a lot of runoff. And the more runoff there 
is, like the more rain there is, there’s more 
runoff. And the more runoff, the more 
water is going to go into the aquifers 
[pointing at the aquifer of her model]. 

We interpret Lorna’s reasoning to illustrate integrated 
multivariational reasoning. Specifically, her first two sen-
tences illustrate independent multivariational reasoning 
because she coordinates the change in two independent 
quantities a and b (relative humidity and air temperature) 
with the change in precipitation and runoff. Her last two sen-
tences illustrate nested multivariational reasoning because 
she is coordinating the amount of precipitation as quantity c, 
the amount of runoff as quantity d and the amount of infiltra-
tion as quantity e (Figure 7). 

Figure 5. Amount of snow when (a) only the air temperature 
is decreased and (b) both the air temperature and 
the land temperature are decreased.

  (a)

  (b)

Figure 6. Illustration of independent multivariational rea-
soning expressed by Chloe.

Figure 7. Illustration of Lorna’s integrated multivariational 
reasoning.
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Partial dependent multivariational reasoning  

Students also illustrated reasoning that we would character-
ize as a subset of Jones’ (2018) dependent multivariational 
reasoning. Here we present an example from Michael’s 
work on the Bob’s Life simulation (Figure 8), which shows 
one of the many possible travel paths of a rock named Bob 
through the rock cycle. At the start of the simulation, Bob is 
located on the top of a volcano. Michael used the up 
(decreasing the depth) or down (increasing the depth) but-
tons to change Bob’s depth in kilometers. As Bob changes 
his depth, Michael observed the changes in his color, form, 
environment, temperature, pressure and the date. 

When we asked him to describe what he had noticed in 
Bob’s Life to someone who has never seen this simulation 
before, Michael clicked the down button on the simulation 
multiple times to move Bob deeper into the ground and 
stated, “I would say that, the deeper, the deeper you get, the 
higher the temperature is, and the higher the pressure is”. In 
contrast to Jones’ (2018) definition in which all three quan-
tities involved are interdependent, Michael’s reasoning 
emphasizes the simultaneous change of the two dependent 
quantities, temperature (quantity b) and pressure (quantity 
c), as influenced by the independent quantity of Bob’s depth 
(quantity a), while quantities b and c are not related to each 
other (Figure 9). 

Connective multivariational reasoning  

We also noticed instances where students related their explo-
rations with quantities that were not part of the specific 
study. We refer to connective multivariational reasoning as 
the form of reasoning that connects the relationship of two 
or more quantities with another quantity that students bring 
in from their prior experiences (what we refer to as a con-
nective quantity). Connective multivariational reasoning is 
always expressed together with another form, such as nested 
multivariational reasoning. For example, when Jared was 
asked to state the relation between Bob’s depth and the tem-
perature, he argued that “The farther Bob goes down, the 
closer he gets to the magma so the hotter the temperature 
gets”. Jared connected the existing covariational relationship 
between Bob’s depth and temperature to the ‘distance from 
magma’, a quantity we define as connective because it was 
not part of the quantities explored in the specific lesson. 

In the above example, Jared added the connective quantity 
in a nested relationship as quantity b (Figure 10a). However, 
we observed that students could add the connective quantity 
in any place of the multivariational relationship. For 
instance, in discussing the relationship between lake temper-
ature and evaporation during the Water Cycle simulation, 

Figure 8. Increasing Bob’s depth in the Bob’s Life simulation and observing the change in temperature and pressure.

Figure 9. Illustration of Michael’s partial dependent multi-
variational reasoning.

Figure 10. Illustrations of connective multivariational rea-
soning expressed by (a) Jared and (b) Lorna.

  (a)

  (b)
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Lorna brought in the connective quantity of sun rays from 
her prior experiences at the beginning of her multivariational 
relationship (quantity a) (Figure 10b), stating “the sun rays 
are heating the water making the molecules go faster, and 
then the water turn it into gas”. 

Synchronous versus asynchronous multivariational  
reasoning 

In our data we found traces of both synchronous and asyn-
chronous variation and our analysis showed that the way the 
phenomenon is modeled has an impact on students’ expres-
sion of synchronous or asynchronous reasoning. In science 
phenomena, while sometimes the change in one quantity is 
synchronous with the change in the other quantities, at other 
times this change is sequential and illustrates an asynchro-
nous relationship. For example, in the Bob’s Life simulation 
(Figure 8), the change in depth causes a simultaneous 
change in both temperature and pressure. Thus, the state-
ments that students made during this exploration illustrated 
more synchronous reasoning, such as Michael’s statement 
above “I would say that, the deeper, the deeper you get, the 
higher the temperature is, and the higher the pressure is”. 

However, in the Water Cycle simulation, the change in lake 
temperature causes an asynchronous and sequential change to 
evaporation, precipitation, and then runoff. As a result, the 
multivariation statements that students expressed during this 
exploration showed an asynchronous variation, such as 
Chloe’s and Justin’s statements above “But if you put it with a 
land temperature, it starts to accumulate in the ground and it 
produces more” or “If there is higher evaporation, there is 
more rain. If there’s more rain, there is more runoff”. 

Although Thompson and Carlson explicitly consider the 
construction of covariational reasoning to be indicative of a 
conception of synchronous variation, students’ statements 
above show that it is possible to reason multivariationally 
about three quantities but still think asynchronously. For 
instance, Justin’s statement couples three quantities together 
(evaporation, precipitation, runoff) but he still thinks of this 
coupling as being asynchronous by envisioning the evapora-
tion changing first, then the precipitation and then the runoff. 
These results can initiate a discussion around the possibility 
of interpreting such statements as illustrating both multivari-
ational reasoning and asynchronous change. 

 
Conclusions 
Thompson and Carlson call for more research contributing 
directly to defining students’ constructs of variation. Our 
investigation of how students may reason about more than 
two quantities makes a contribution to this call. However, 
more research is needed to examine young students’ multi-
variational reasoning. To begin with, our initial goal in the 
study was to engineer opportunities for students to reason 
variationally and covariationally, therefore our tasks and 
questioning were restricted to only a few prompts to connect 
multiple quantities. However, these few prompts illustrated 
the importance of targeted questioning for prompting stu-

dents to study the variation in multiple quantities and reason 
multivariationally. In the next iteration of our design, we 
plan to engineer more opportunities for this type of reason-
ing. Furthermore, future research can explore further the role 
of technology, and specifically simulations, as a context for 
this kind of reasoning. It would be also worth investigating 
how students may utilize the multivariational reasoning they 
develop through their interactions with the simulations to 
non-digital tasks. 

Additionally, future studies may also examine further 
the effect that the modeling of the science phenomenon 
has on students’ multivariational reasoning, especially for 
bringing in connective quantities, as well as their expres-
sion of synchronous or asynchronous reasoning. Our study 
has set the groundwork for discussing whether envision-
ing an asynchronous coupling of quantities is partly 
dependent on the context and not solely on the student’s 
developmental ability. All this work can shed light into 
understanding better how we may democratize access to 
the mathematics of change and variation for our young 
students. 
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