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Justin, a Grade 6 student, is exploring the simulation model-
ing the water cycle (Figure 1). It allows him to change the air
temperature, mountain temperature, land temperature, lake
temperature and relative humidity, and to observe the effects
on quantities such as the rate of evaporation from the lake, the
amount of precipitation (rainfall) and the amount of runoff.
Justin moved the lake temperature slider and argued that
“the lake temperature if it’s like very high it can evaporate,

and the rain that falls could be like more” (Figure 2). Justin’s
statement shows that he is coordinating the change in three
quantities: lake temperature — evaporation — precipitation.

In this article, we define forms of students’ reasoning
around variation, especially in cases like Justin’s in which
multiple quantities vary together, and we show how students
as young as in Grade 6 can engage in complex forms of vari-
ational reasoning in suitable contexts.

Figure 1. The Water Cycle simulation.
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Figure 2. When the temperature increases, there is more evaporation (dots) and consequently there is more rain and more runoff.
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Variation, covariation and multivariation
Quantities, as described by Thompson (1994), are measur-
able conceptual attributes constructed by an individual when
conceiving a quality of an object. For instance, during the
exploration of the Water Cycle simulation students identified
quantities such as ‘humidity’, ‘air temperature’ and ‘moun-
tain temperature’. In constructing relationships between
quantities, Thompson and Carlson (2017) distinguished
between asynchronous variation which involves envision-
ing one variable changing, then the second, then the third,
and synchronous variation which involves reasoning about
the quantities changing simultaneously. Envisioning
changes in one variable’s value as happening simultaneously
with changes in another variable’s value is what Thompson
and Carlson refer to as covariational reasoning. For instance,
while exploring the Water Cycle simulation, Kelly dragged
the relative humidity slider to change the value from 0% to
100% and observed that “the higher the relative humidity,
the lower the rate of evaporation”. Reasoning about varia-
tion and covariation of quantities has been studied
extensively by the mathematics education community as a
way of supporting students’ learning of rate of change (e.g.,
Johnson, 2012) and functions (e.g., Paoletti & Moore, 2018).
However, Thompson and Carlson argue that most of the
studies examining students’ variational and covariational
reasoning use those constructs to frame their investigations
but do not contribute explicitly to the development of the
definitions of these constructs.

In analyzing the data from our study (e.g., Basu &
Panorkou, 2019; Panorkou & Germia, 2020), we noticed that
students not only reasoned covariationally but also reasoned
about more than two quantities changing simultaneously, sim-
ilar to Justin’s reasoning above. This finding opened the
opportunity to make a significant contribution to the field since
the only prior research study characterizing students’ multi-
variational reasoning focuses exclusively on undergraduate
mathematics education (Jones, 2018). Indeed, although the
mathematics of change and variation are important for students
in order to understand various environmental, economic and
social trends of the twenty-first century, most of these concepts
are introduced to students at higher grade levels, by which 90%
of students are already filtered out by prerequisite classes
(Roschelle, Kaput & Stroup, 2000). As a result, a large number
of students do not have opportunities to engage with these con-
cepts, in spite of the importance of this type of mathematics.

Sixth-grade students’ forms of reasoning
about multiple quantities

In this article, we discuss our characterizations of students’
multivariational reasoning by presenting examples from data
gathered from a series of whole-class design experiments
(Cobb, Confrey, diSessa, Lehrer & Schauble, 2003) con-
ducted in different sixth-grade classrooms (11-12 years old)
in a large suburban school district with a heterogenous pop-
ulation in the Northeast of the United States. In the district of
the participating schools, 46% of the students are classified as
economically disadvantaged and have an average mathemat-
ics proficiency of 29.3%. Three design experiments focused
on examining scientific phenomena using interactive simula-
tions: two on the water cycle and one on the rock cycle.
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Figure 3. Illustration of nested multivariational reasoning
expressed by Justin.

Similar to Jones’ (2018) characterizations of multivaria-
tional reasoning by undergraduate students, in analyzing
data from our sixth-grade students we identified forms of
nested, independent and a form of partial dependent multi-
variational reasoning. In addition to demonstrating examples
of these forms from our data, we also present some new mul-
tivariational forms that were not identified by Jones but were
present in our data, such as nested and transitive, integrated
and connective multivariational reasoning. We also discuss
how the science context played a key factor in students’ con-
ceptions of synchronous versus asynchronous variation.

Nested multivariational reasoning

Jones (2018) defined nested multivariation as involving a
chain of related dependencies. For instance, Justin’s statement
that “the lake temperature if it’s like very high it can evapo-
rate, and the rain that falls could be like more” reflects nested
multivariation reasoning. We interpret his reasoning to show a
sequential image of change illustrated in Figure 3: that the
change in lake temperature (quantity a) impacts the rate of
evaporation (quantity ), and that the change in evaporation
(quantity b) affects a change in precipitation (quantity c).

Nested and transitive multivariational reasoning

In their nested multivariational reasoning, students some-
times reasoned transitively, in a similar manner as
recognizing a transitive property. For example, when stu-
dents were asked whether a higher rate of evaporation would
lead to more runoff, lan stated that more evaporation would
“more likely” lead to more runoff because “if there is higher
evaporation, there is more rain. If there’s more rain, there is
more runoff”. We interpret Ian’s reasoning to illustrate a
form of nested and transitive multivariational reasoning,
because he used the relationship between evaporation and
rain, and the relationship between rain and runoff, to reason
explicitly about how a change in evaporation (quantity a)
causes a change in runoff (quantity c) (Figure 4).
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Figure 4. Illustration of nested and transitive multivaria-
tional reasoning expressed by Ian.
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Figure 5. Amount of snow when (a) only the air temperature
is decreased and (b) both the air temperature and
the land temperature are decreased.

Independent multivariational reasoning

Students also exhibited reasoning similar to Jones’ (2018)
definition of independent multivariation as involving at least
two quantities that are independent from each other and
affect the change in another quantity. For example, while
exploring the Water Cycle simulation, we prompted the stu-
dents to make the precipitation in the form of snow by
manipulating only the air temperature and the land temper-
ature, and then asked them, “What conditions will release
more snow?” Chloe and Justin worked as a pair to explore
the conditions of snow and reasoned that “We need both of
them to be cold” (Figure 5). To explain her reasoning,
Chloe decreased the value for the air temperature by drag-
ging the slider to the left, showing that the cloud was
releasing a mixture of rain and snow, stating, “if you just
move for air temperature, it only snows a little bit”. Next,
she decreased the value for the land temperature by drag-
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Figure 6. Illustration of independent multivariational rea-
soning expressed by Chloe.

ging the slider to the left and showed on the simulation that
the cloud released more snow which accumulated on the
ground. She then explained, “But if you put it with a land
temperature, it starts to accumulate in the ground and it pro-
duces more”.

We interpret Chloe’s reasoning to show independent mul-
tivariational reasoning because she coordinated the change
of land temperature (quantity a) and air temperature (quan-
tity b) as unrelated independent quantities with the change in
snow (quantity c) as the dependent quantity (Figure 6). Her
statements also show that it was her interaction with the sim-
ulation and our questioning that helped her to notice the two
changing quantities at first, air temperature and amount of
snow, and then to notice the change in snow when a third
quantity, the land temperature, was added to the existing
covariational relationship.

Integrated multivariational reasoning

We also noted instances where the students merged more
than one form of multivariational reasoning in their state-
ments. For instance, after students explored the Water Cycle
simulation, we asked them to draw and explain their model
of the water cycle. Lorna then reasoned about five quanti-
ties, namely relative humidity, air temperature, rain
(precipitation), runoff and amount of water going into
aquifers (infiltration):

Lorna So, this is when the relative humidity and
the air temperature are above 32 degrees.
So then, there’s gonna be a lot of rain and
a lot of runoff. And the more runoff there
is, like the more rain there is, there’s more
runoff. And the more runoff, the more
water is going to go into the aquifers
[pointing at the aquifer of her model).

We interpret Lorna’s reasoning to illustrate integrated
multivariational reasoning. Specifically, her first two sen-
tences illustrate independent multivariational reasoning
because she coordinates the change in two independent
quantities a and b (relative humidity and air temperature)
with the change in precipitation and runoff. Her last two sen-
tences illustrate nested multivariational reasoning because
she is coordinating the amount of precipitation as quantity c,
the amount of runoff as quantity d and the amount of infiltra-
tion as quantity e (Figure 7).
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Figure 7. Illustration of Lorna’s integrated multivariational
reasoning.
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Figure 8. Increasing Bob’s depth in the Bob'’s Life simulation and observing the change in temperature and pressure.

Partial dependent multivariational reasoning

Students also illustrated reasoning that we would character-
ize as a subset of Jones’ (2018) dependent multivariational
reasoning. Here we present an example from Michael’s
work on the Bob’s Life simulation (Figure 8), which shows
one of the many possible travel paths of a rock named Bob
through the rock cycle. At the start of the simulation, Bob is
located on the top of a volcano. Michael used the up
(decreasing the depth) or down (increasing the depth) but-
tons to change Bob’s depth in kilometers. As Bob changes
his depth, Michael observed the changes in his color, form,
environment, temperature, pressure and the date.

When we asked him to describe what he had noticed in
Bob’s Life to someone who has never seen this simulation
before, Michael clicked the down button on the simulation
multiple times to move Bob deeper into the ground and
stated, “I would say that, the deeper, the deeper you get, the
higher the temperature is, and the higher the pressure is”. In
contrast to Jones’ (2018) definition in which all three quan-
tities involved are interdependent, Michael’s reasoning
emphasizes the simultaneous change of the two dependent
quantities, temperature (quantity b) and pressure (quantity
¢), as influenced by the independent quantity of Bob’s depth
(quantity a), while quantities b and c are not related to each
other (Figure 9).

temperature

(quantity b)

depth
(quantity a)

pressure

(quantity c)

Figure 9. Illustration of Michael’s partial dependent multi-
variational reasoning.
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Connective multivariational reasoning

We also noticed instances where students related their explo-
rations with quantities that were not part of the specific
study. We refer to connective multivariational reasoning as
the form of reasoning that connects the relationship of two
or more quantities with another quantity that students bring
in from their prior experiences (what we refer to as a con-
nective quantity). Connective multivariational reasoning is
always expressed together with another form, such as nested
multivariational reasoning. For example, when Jared was
asked to state the relation between Bob’s depth and the tem-
perature, he argued that “The farther Bob goes down, the
closer he gets to the magma so the hotter the temperature
gets”. Jared connected the existing covariational relationship
between Bob’s depth and temperature to the ‘distance from
magma’, a quantity we define as connective because it was
not part of the quantities explored in the specific lesson.

In the above example, Jared added the connective quantity
in a nested relationship as quantity b (Figure 10a). However,
we observed that students could add the connective quantity
in any place of the multivariational relationship. For
instance, in discussing the relationship between lake temper-
ature and evaporation during the Water Cycle simulation,
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Figure 10. Illustrations of connective multivariational rea-
soning expressed by (a) Jared and (b) Lorna.



Lorna brought in the connective quantity of sun rays from
her prior experiences at the beginning of her multivariational
relationship (quantity a) (Figure 10b), stating “the sun rays
are heating the water making the molecules go faster, and
then the water turn it into gas”.

Synchronous versus asynchronous multivariational
reasoning

In our data we found traces of both synchronous and asyn-
chronous variation and our analysis showed that the way the
phenomenon is modeled has an impact on students’ expres-
sion of synchronous or asynchronous reasoning. In science
phenomena, while sometimes the change in one quantity is
synchronous with the change in the other quantities, at other
times this change is sequential and illustrates an asynchro-
nous relationship. For example, in the Bob’s Life simulation
(Figure 8), the change in depth causes a simultaneous
change in both temperature and pressure. Thus, the state-
ments that students made during this exploration illustrated
more synchronous reasoning, such as Michael’s statement
above “I would say that, the deeper, the deeper you get, the
higher the temperature is, and the higher the pressure is”.

However, in the Water Cycle simulation, the change in lake
temperature causes an asynchronous and sequential change to
evaporation, precipitation, and then runoff. As a result, the
multivariation statements that students expressed during this
exploration showed an asynchronous variation, such as
Chloe’s and Justin’s statements above “But if you put it with a
land temperature, it starts to accumulate in the ground and it
produces more” or “If there is higher evaporation, there is
more rain. If there’s more rain, there is more runoff”.

Although Thompson and Carlson explicitly consider the
construction of covariational reasoning to be indicative of a
conception of synchronous variation, students’ statements
above show that it is possible to reason multivariationally
about three quantities but still think asynchronously. For
instance, Justin’s statement couples three quantities together
(evaporation, precipitation, runoff) but he still thinks of this
coupling as being asynchronous by envisioning the evapora-
tion changing first, then the precipitation and then the runoff.
These results can initiate a discussion around the possibility
of interpreting such statements as illustrating both multivari-
ational reasoning and asynchronous change.

Conclusions

Thompson and Carlson call for more research contributing
directly to defining students’ constructs of variation. Our
investigation of how students may reason about more than
two quantities makes a contribution to this call. However,
more research is needed to examine young students’ multi-
variational reasoning. To begin with, our initial goal in the
study was to engineer opportunities for students to reason
variationally and covariationally, therefore our tasks and
questioning were restricted to only a few prompts to connect
multiple quantities. However, these few prompts illustrated
the importance of targeted questioning for prompting stu-

dents to study the variation in multiple quantities and reason
multivariationally. In the next iteration of our design, we
plan to engineer more opportunities for this type of reason-
ing. Furthermore, future research can explore further the role
of technology, and specifically simulations, as a context for
this kind of reasoning. It would be also worth investigating
how students may utilize the multivariational reasoning they
develop through their interactions with the simulations to
non-digital tasks.

Additionally, future studies may also examine further
the effect that the modeling of the science phenomenon
has on students’ multivariational reasoning, especially for
bringing in connective quantities, as well as their expres-
sion of synchronous or asynchronous reasoning. Our study
has set the groundwork for discussing whether envision-
ing an asynchronous coupling of quantities is partly
dependent on the context and not solely on the student’s
developmental ability. All this work can shed light into
understanding better how we may democratize access to
the mathematics of change and variation for our young
students.

Acknowledgments

This research was supported by the National Science Foundation
(#1742125). The reviews expressed do not necessarily reflect official posi-
tions of the Foundation. The researchers would like to thank Sowmith
Etikyala, Toni York and Michelle Zhu for the development of the simula-
tions. They would also like to thank Jay Singh and Pankaj Lal for their input
on the science content of the explorations.

References

Basu, D. & Panorkou, N. (2019) Integrating covariational reasoning and
technology into the teaching and learning of the greenhouse effect. Jour-
nal of Mathematics Education 12(1), 6-23.

Cobb, P., Confrey, J., diSessa, A., Lehrer, R. & Schauble, L. (2003) Design
experiments in educational research. Educational Researcher 32(1),9-13.

Johnson, H. L. (2012) Reasoning about variation in the intensity of change
in covarying quantities involved in rate of change. The Journal of Math-
ematical Behavior 31(3), 313-330.

Jones, S. (2018) Building on covariation: making explicit four types of
“multivariation.” In Weinberg, A., Rasmussen, C., Rabin, J. & Wawro,
M. (Eds.), Proceedings of the 21st annual Conference on Research in
Undergraduate Mathematics Education. SIGMAA on RUME.

Panorkou, N. & Germia, E. (2021) Integrating math and science content
through covariational reasoning: the case of gravity. Mathematical
Thinking and Learning 23(4), 318-343.

Paoletti T. & Moore K. C. (2018) A covariational understanding of function:
putting a horse before the cart. For the Learning of Mathematics, 38(3),
37-43.

Roschelle, J., Kaput J. & Stroup W. (2000) Simcalc: Accelerating Students’
Engagement with the Mathematics of Change. In Jacobsen, M., J. and
Kozma, R. B. (Eds.) Innovations in Science and Mathematics Educa-
tion: Advanced Designs for Technologies of Learning, 47-76. Lawrence
Erlbaum Associates.

Thompson, P. W. (1994) The development of the concept of speed and its
relationship to concepts of rate. In Harel, G. & Confrey, J. (Eds.) The
Development of Multiplicative Reasoning in the Learning of Mathemat-
ics, 181-234. SUNY Press.

Thompson, P. W. & Carlson, M. P. (2017) Variation, covariation, and func-
tions: Foundational ways of thinking mathematically. In J. Cai (Ed.)
Compendium for Research in Mathematics Education, 421-456.
National Council of Teachers of Mathematics.

23





