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We present the Method of Varying Inquiry (MVI), aimed at
fostering students’ involvement in discerning mathematical
ideas through an inquiry-based approach to mathematics.
Conceived within a post-Vygotskyan perspective towards
teaching and learning (e.g., Stetsenko & Arievitch, 2002),
MVI also helps teachers in becoming aware of how students
discern mathematical objects through inquiry processes and
in designing activities that support both students’ inquiry
and teachers’ didactical goals (see, e.g., how to lead class-
room discussions to foster these processes, together with
students’ reflections on them).

The MVI-model is a theoretical construct that specifies
the role of the teacher in supporting students’ inquiry
processes and suggesting a flexible didactic method to frame
them. In this article, we present the MVI-model by introduc-
ing the two main theoretical components upon which the
MVI-model is built: the inquiry-based approach to teaching
mathematics and the variation theory of learning, its novel
elements, and an example to illustrate how it can guide the
design of tasks for students and of inquiry oriented class-
room interactions.

Inquiry-based mathematics education
Inquiry-based mathematics education has roots years ago in
many scholars’ ideas on the need to focus on the experimen-
tal dimension of mathematics. Artigue and Blomhgj (2013)
proposed a conceptualization of inquiry-based approaches,
covering a range of factors: (a) the epistemological rele-
vance of the questions, (b) the modeling dimension of the
inquiry process and the experimental dimension of mathe-
matics, (c) the development of problem-posing and
problem-solving abilities and inquiry habits of mind, (d) the
collaborative dimension of the inquiry process, (e) the
autonomy and responsibility given to students, the guiding
role of the teacher, and teacher-student dialogic interactions.
The guiding role of the teacher in supporting students is
essential to the effectiveness of inquiry-based learning
(Lazonder & Harmsen, 2016). In fact, if inquiry-based learn-
ing is interpreted as an approach in which the “learner is not
provided with the target information or conceptual under-
standing and must find it independently and with only the
provided materials” (Alfieri, Brooks, Aldrich & Tenenbaum,
2011, p. 4), neglecting the role of the teacher, it has limited
educational value (Scott, Smith, Chu & Friesen, 2018).
Given the importance of the teacher in inquiry-based
learning it is important to design educational activities that
might promote several layers of the inquiry processes and,
as the implementation of these activities in the classrooms is

a complex task for many teachers, to develop frameworks to
support their work. Our research aims to generate an explicit
model of how teachers can actually lead inquiry processes in
their classrooms, and how such processes can be concretely
fostered, beyond the inquiry approach itself. This model
combines the inquiry-based framework with another educa-
tional perspective that could support the design of effective
educational activities aimed at creating experiential spaces
where students can have opportunities for understanding,
seeing, and acting in the world: variation theory.

Variation theory
Variation theory (Marton & Tsui, 2004) defines learning as a
change in the way an object of learning is discerned: how it is
seen, experienced, understood. According to variation theory,
an object of learning can be formulated in three different
ways of increasing precision, in terms of: content (e.g., linear
function), educational objectives (e.g., generalizing patterns),
and critical aspects, which the learners should simultane-
ously discern to make the object of learning their own. To
help students notice the critical aspects, the teacher must
search for them in advance, and this is challenging, because
they are relative to the object of learning and learners as well.
According to Marton (2015), the creation of meaning
occurs through contrasting the object of learning with other
objects from the same dimension of variation, which refers
to the aspect to focus on (e.g., numbers, function, shapes,
etc.), and its values that are features of the aspect (e.g., 1,2,
3, ...; linear function, cubic, trigonometric, efc.; triangle,
square, kite, etc.). To illustrate contrast, this example is use-
ful: to discern the color ‘green’, we should contrast it with
different colors, keeping some objects invariant (green ball,
red ball, blue ball, ezc.). Once the meaning is found through
the contrast pattern, the generalization of the object of learn-
ing is necessary: not only the ball that is green but also other
things (e.g., green ball, green window, green bottle, etc.).
The learning object (color green) is invariant in such cases,
while the other objects vary. After separating the objects by
contrast and generalization, the whole must be put together
again, to simultaneously experience certain aspects of the
object of learning: this pattern is called fusion. The order of
these patterns is important for learning, according to Marton.
To help the learners to discern the critical aspect while
preserving the students’ inquiry process, the teacher should
design a set of tasks to achieve this aim. This can be done by
separating the aspects first and then fusing: “seeing a certain
class of phenomena in terms of a set of aspects that are ana-
lytically separated but simultaneously experienced provides
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a more effective basis for powerful action than a global,
undifferentiated way of seeing the same class of phenom-
ena” (Marton & Tsui, 2004, pp. 16-17).

In this article, we employ key principles of variation the-
ory to support teachers’ design of activities aimed at
scaffolding students’ inquiry processes.

Method of Varying Inquiry

MVI consists of designing challenging tasks for students (as
in the inquiry approach), in meaningful contexts (real-world
or mathematical), by varying some variables of phenomena
while keeping the others invariant (as in variation theory) to
let students discern the object of learning embedded in the
phenomena. Moreover, in order to create a model that could
operationally support teachers in fostering and leading
inquiry processes in their classes, we add two elements use-
ful to a meticulous design of classroom activities and
discussions that foster students’ inquiry processes.

The first element is didactical: the mathematics labora-
tory, elaborated in the institutional context of the Italian
Ministry of Education (Anichini, Arzarello, Ciarrapico &
Robutti, 2003) and representing a teaching approach based
on group and peer work, sharing and comparing ideas, class-
room discussions led by the teacher, and ‘acting’ instead of
‘listening’ through problem posing and problem solving. It is
aimed at fostering the construction of meanings of mathe-
matical objects through the use of different tools and
through social interaction.

The second element is theoretical: the virtuous cycle (see
Figure 1), introduced by Swidan, Arzarello & Beltramino
(2017) as a process that supports students in making sense of
mathematics by enabling them to connect different pieces of
theoretical knowledge (not only mathematical). The cycle
draws its origins from similar and more complex cycles for
using formal mathematics to interpret real-world situations
(Schoenfeld, 1991).

The virtuous cycle consists of four intertwined processes:
(I) representation of aspects of a situation (related to a phe-
nomenon in a real-world or mathematical context) into a
formal system; (I) treatment of the representation within a
formal system or conversions between systems towards a
generalization in a class of formal systems [2]; (III) interpre-
tation of the generalisation in relation to a family of
situations; (IV) interpretation of the initial situation within a
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Virtuous cycle (adapted from Swidan, Arzarello &
Beltramino, 2017).

Figure 1.

Figure 2. MVI: a spiral-shaped and multi-layered model.

family of situations. It is important to stress that (IV) is,
therefore, the outcome of (I), (II), and (III). In tune with
Godino (1996), we take the notion of situation (or problem-
situation) as a primitive idea. A situation could refer both to
real-world or mathematical phenomena and it represents for
us a macro-object of inquiry. This object becomes a problem
when questions are posed, making the students focus on spe-
cific variables that emerge when phenomena are analyzed
and on the relationships between these variables.

When we use the term ‘formal system’ we mean not only
the register that is chosen to construct representations, but
also all the theoretical frames (properties used, typical pro-
cedures, ...) within which the situation is represented,
interpreted, and studied. Of course, the cycle is productive if
Arrow IV (in Figure 1) represents a genuine ‘epistemic gain’
in how the students interpret the initial situation after the
cycle, that is, if they consider the explored situation as par-
ticular case of a family of situations.

The MVI-model interprets learning as a layered inquiry
process (see Figure 2) promoted—in the context of the
mathematics laboratory—through a task-design that may
support students in making sense of mathematical concepts
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Figure 3. Levels of inquiry in MVL
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through the processes that characterize the virtuous cycle.

This layered process to the building of meanings is a
novel element introduced by the MVI-model with respect to
the inquiry approach and to variation theory. The several
levels of inquiry that characterize M VI are represented in
Figure 3.

Implementing MVI: a representative example
MVI is not only aimed at introducing a layered process of
students’ learning, but also at supporting teachers in both the
design of activities aimed at fostering inquiry processes and
the planning of how to lead classroom discussions. In this
section, we focus on both aspects by means of an example,
contextualized in Grade 8. The initial level of the inquiry
starts with providing the students with a task that introduces
a situation to be investigated and draws their attention to
specific aspects of the object of learning under investigation
(Choosing a starting point, in Figure 3). In our example, the
educational objective that characterizes the object of learn-
ing is to enable students to generalize patterns of numbers
algebraically. Each possible task supports students’ focusing
on different dynamic aspects of the situation, that is, on dif-
ferent dimensions of variation (Marton, 2015). In our
example, students are provided with a number table (see
Figure 4a, inspired by Brown & Walter, 2005, pp. 80-81),
and asked to observe it with a ‘mathematical eye’ to identify
regularities. Henceforth, we will refer to this activity as ‘pat-
terns of numbers’.

At the ‘Choosing a starting point’ level, the teacher intro-
duces the problem to be faced and describes how the lesson
will be conducted (that is, the students’ tasks and the role
they have to play during the class). Students are introduced
to ‘a situation’ (the first box in the virtuous cycle, Figure 1)
and start their observation of variation of three interrelated
variables, corresponding to the numbers within the three
columns of the table in Figure 4a. The first step is contrast-
ing the variables within the columns with each other,
perceiving their different values, and identifying the possible
patterns in the table. A further dimension of variation inter-
venes: the different ways in which students could explore
the table. They could, in fact, focus on each column sepa-
rately (generalization) to highlight the way in which each
variable varies inside the column, or they could look at two
or three columns simultaneously to highlight possible rela-
tionships within the table (fusion).

At the following level (Listing the observations, in Figure
3), students are required to work in groups and to list their
observations and conjectures, while the teacher monitors their

work and encourages them to discuss and share their observa-
tions. The teacher may also pose and promote questions if the
students are blocked, suggesting they focus on specific vari-
ables/relations that can be generalized. These teacher
interventions are directed at scaffolding the students’ inquiry
process by drawing their attention to different ways of explor-
ing the table, by varying single variables or by observing the
relationships between them. This scaffolding phase is crucial,
since the teacher guides the students’ inquiry, aiming at ren-
dering them autonomous in developing it. Moreover, the
teacher can also identify some student observations that
should be discussed (with a certain order) in the following
level of the activity (Collective discussion, in Figure 3).

Afterwards, the groups are asked to share their observa-
tions publicly and the teacher lists them on the whiteboard.
At the collective discussion level, the teacher manages the
class discussion in order to share the conjectures produced
by the different groups. The teacher asks for clarifications,
posing questions such as ‘What does this word mean?’,
‘How can we better define this idea to present our observa-
tion in a more precise way?’ The aim is to support students
in sharing their ideas and to gather together the produced
conjectures in the form: ‘If A;, then B;’.

Referring to the ‘patterns of numbers’ activity, we assume
that Grade 8 students can observe, for example, that—in
each line—the difference between two numbers in the first
and second columns (Figure 4a), is 2, while the number in
the third column is the product of them.

Another regularity that can be observed is that each num-
ber in the third column is the difference between the square
of a number (the mean between the two numbers in the first
and second column). Suppose that the students have difficul-
ties in discerning this regularity. In this case, the teacher can
provide them with the table in Figure 4b, to direct their
attention on the generalization pattern as the numbers vary,
while keeping something invariant (e.g., the constant -1).
Students can become aware of the new pattern ‘square of the
mean minus 1’ by contrasting square numbers (4, 9, 16,
25...) of the mean (2, 3, 4, 5, ...) with the numbers in the
third column (3, 8, 15, 24, ...). To help the students being
aware of the squared numbers, the teacher asks them to write
the numbers in the third column in Figure 4b in different
ways. Then, the teacher poses questions aimed at making
students evaluate the correctness (or not) of the proposed
observations through the analysis of the data or the develop-
ment of experiments (‘Do you agree with this?’, ‘Is it always
true?’) and at stimulating students’ constructions of argu-
mentations to support their conjectures and justify the

(a) (b) (©)
1 3 3
2 4 8 1 3 3=4-1 1 5 5=9-4
3 5 15 2 4 8=9-1 2 6 12=16-4
3 5 15=16-1 3 7 21=25-4
4 6 24 4 6 24-25-1 4 8 32-36-4
5 7 35 5 7 35=36-1 5 9 45=49-4

Figure 4. The pattern of numbers activity: (a) the situation (b) possible relations (c) further variation.

16



statements (‘How can we justify this statement?’). At this
point, the students’ role changes from observer to discussant.
The students should also be able to refer to theoretical
knowledge to justify their observations, constructing state-
ments in the form of ‘this is/works/happens because... .
For example, in the ‘patterns of numbers’ activity, teacher/
students can introduce symbolic representations to highlight
that each product could be written as x(x+2) = x> + 2x =
(@ +2x+1)-1=(x+1)*- 1, justifying, through generaliza-
tion, the regularities they noticed. Therefore, aspects of a
mathematical situation are represented in ‘a specific formal
system’, through a conversion from oral to symbolic register
(Arrow I, Figure 1). Then treatments within a formal system
are developed to prove the observed regularities (Arrow II,
Figure 1).

After students come to an agreement and construct their
justifications, the teacher (and ideally the students) should
pose other questions in the form “What happens if not A;?’ to
make the students move forward in their inquiry (What if it
is not so, in Figure 3). The formulation of such questions,
which are aimed at making the students shift from one layer
of inquiry to another one, is inspired by the fusion pattern of
variation theory. At this level, the students’ role gradually
shifts from discussant to problem poser (Brown & Walter,
2005). Initially, the teacher could suggest possible new con-
jectures, asking ‘What happens if A*; instead of A;?”. In the
case of the ‘patterns of numbers’ activity, the teacher, or bet-
ter the students, can introduce a further dimension of
variation and create additional inquiry by varying one of the
invariant variables in the preceding situation. For instance,
students can be asked about what happens if the difference
between the numbers in the second and first column is 4 (or
6, 8, ...) instead of 2 (Figure 4c). This question could lead
them to observe that, when the difference is 4, the numbers
in the third column can be written as the difference between
the square of a number (the mean between the two numbers
in the first and second column) and 4. Students, therefore,
could experience generalization, since introducing this fur-
ther dimension of variation corresponds to introducing new
tables to be explored, characterized by a structure similar to
the one of the initial table. The following exploration would
lead them to conceptualize the difference between the num-
bers in the second and first column as a parameter,
representing the general situation with the expression
x(x + 2n) and transforming it to gain a general result:

x(x +2n) = x% + 2nx = (x% + 2nx + n?) —n? = (x + n)? —n?

The construction of the expression x(x + 2n) and its
consequent transformation represents again the Arrow 11
(Figure 1), since it enables the students to interpret the
expression x(x + 2) as a representative of a broader class of
expressions in the form x(x + 2n). The interpretation of the
expression (x + n)x - n* in relation to the problem (Arrow III,
Figure 1) enables the students not only to prove a general
property of all the possible tables constructed according to
the rules identified during the initial exploration, but also to
interpret the table in Figure 4a as a representative of a family
of tables (with different values of parameters). In this way,
the initial situation is interpreted as a member of a family of
situations (Arrow IV, Figure 1).

Subsequently, the teacher could introduce a further dimen-
sion of variation and ask students to investigate possible new
hypotheses. For example, within the ‘patterns of numbers’
activity, students could consider couples of numbers whose
difference is not even. Through questions in the form ‘What
happens if ...?” and “What happens if not ...?", it would be
possible to progress to a new layer of MVI, which has a new
situation to be explored. The diagram in Figure 3 can there-
fore be interpreted as a multi-dimensional diagram: every
time a question in the form ‘What if...?” or ‘What if not...?’
is posed, a shift to another layer is activated. This enables stu-
dents to enlarge the family of problems/situations to which
the initial problem/situation belongs.

At each step of students’ new explorations, the teacher
guides a classroom discussion (collective discussion, in
Figure 3), during which new conjectures are formulated (‘If
Aj+1 then B;+1’) and new arguments are constructed to justify
them.

After some cycles of this inquiry activity, the discussion
could be brought to the meta-reflection level (Figure 3), a
new element that the MVI-model brings within the frame-
work of the inquiry-based approach: students are asked to
connect the real/mathematical situation with theoretical
knowledge. The teacher stimulates the students to identify
connections between the different conjectures produced,
making them highlight the mathematics behind the exam-
ples. In reference to the ‘patterns of numbers’ activity, the
teacher could make students reflect on the comparison
between the regularities observed if the difference between
the numbers in the first two columns is even and if it is odd,
reflecting on the structure of the proof based on the algebraic
expressions. Moreover, an analysis of the different roles
(variable, parameter) played by the variables (x and n) could
be developed.

The meta-reflection level (Figure 2) could represent a fun-
damental moment of the MVI-model within which the
virtuous cycle can be effectively completed, since it is aimed
at involving students in reflecting on connections between
theoretical knowledge and the family of situations (Figure 1)
under inquiry.

As stressed in the example above, MVI is designed in
such a way that at each layer the students are supposed to
construct specific knowledge regarding the specific task,
and to connect different pieces of theoretical knowledge (not
only mathematical) in the transition through the layers. The
example also shows that an essential aspect of this method is
that students are provided with resources (tables, algebraic
expressions, graphs, dynamic diagrams...) to experience
inquiry, to formulate conjectures and verify/refute them.

Conclusion

The MVI-model has been implemented in some teaching
experiments, and the first results show that students did
indeed develop competencies such as abstract representa-
tion, geometric thinking, functional thinking, explaining
phenomena, building models and describing them, formulat-
ing questions, formulating claims and justifying them.
Other, equally important competencies, the development of
which we anticipated in the model’s design, have yet to be
empirically investigated.
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For example, based on the idea that mathematics is a
social activity, the instruction according to the MVI-model is
built around group and class discussions. We assume that
such teaching, under the proper guidance of the teacher,
could introduce students to the discourse of the field of
mathematics and provide an opportunity to engage in discus-
sion according to the conventions of that discourse.
Moreover, since the model asks students to formulate and
justify their research conclusions in the form of ‘If ... then’
and ‘If not ... then’, we hypothesize that this requirement
could improve the students’ argumentation—their ability to
present information in a fluid and convincing manner. Work-
ing in small groups (inspired by the idea of a mathematics
laboratory) to solve mathematical problems should, we
believe, develop students’ ability to identify thought
processes and make group decisions, and their ability to
make decisions and carry out tasks in a cooperative manner
(Anichini, Arzarello, Ciarrapico & Robutti, 2003).

As mentioned above, the tasks the teacher should prepare
are not limited only to pure mathematical tasks, but also tasks
and questions that include real-life aspects, which the stu-
dents are asked to explain by mathematical means. Tasks of
this type can develop the ability to: use mathematical knowl-
edge to describe and explain phenomena and events; identify
phenomena, and construct mathematical models to describe,
explain and predict these phenomena. We assume that devel-
oping the ability to ask ‘what if’ questions should help
students ask questions and explore new and unexpected
directions, look for solutions in unusual places, and use exist-
ing knowledge in new contexts (Brown & Walter, 2005).

Further empirical investigations are needed also to face
theoretical challenges related to the novel elements that the
MVI-model introduces within the inquiry-based approach.
In particular, empirical studies are needed to identify tools
and constructs to develop a theoretically based analysis of
the roles played by the teacher in fostering students’ engage-
ment within the virtuous cycle and to deepen the
investigation of how teachers’ interventions during both stu-
dents working group activities and collective discussions
affect students’ inquiry processes.

The results of our case studies to date have also revealed
possible challenges in implementing the model. These
include teachers’ difficulty in translating the model’s princi-
ples into concrete task designs, in deciding when and how
to intervene in the students’ inquiry process, and in match-
ing that intervention to the model’s goals. Last—and
perhaps most prominently—our results have revealed
teachers’ difficulty in relinquishing old instructional prac-
tices and adopting new ones. These results have raised
questions such as: What are the features of effective profes-
sional development programs we might use to educate
teachers to design tasks that match MVI’s goals, and to crit-
ically reflect on their ongoing instructional practices? Is the
MVI-model applicable to all mathematical topics? If not, to
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which topics is it most usefully applied? What kind of
teacher intervention promotes inquiry processes and what
might instead be hindering them? Investigating some of
these questions will be the target of the next stages of our
research.

Finally, the implementation of the MVI-model will need
to be examined in a wider variety of schools and popula-
tions. We know that the MVI-model’s components, as
described above, constitute an overall ‘big picture’. Addi-
tional studies are still needed to further develop and
elaborate upon the MVI-model by breaking it down into
smaller, more distinct components that will overcome the
concrete challenges involved in its implementation.

Note

[1] The terminology employed here is from Duval (2006). Treatment refers
to transformations within the same register, e.g., when (x - 1)* + (y - 1)*=2
is developed into x* + y* - 2x - 2y = 0. Conversion refers to transformations
between different registers, e.g., when the previous formula is interpreted as
a circle in the Cartesian plane.

References

Alfieri, L., Brooks, P. J., Aldrich, N. J. & Tenenbaum, H. R. (2011) Does
discovery-based instruction enhance learning? Journal of Educational
Psychology 103(1), 1-18.

Anichini, G., Arzarello, F., Ciarrapico, L. & Robutti, O. (Eds.) (2003)
Matematica 2003. Attivita didattiche e prove di verifica per un nuovo
curricolo di matematica (ciclo secondario). Matteoni Stampatore.

Artigue, M. & Blomhgj, M. (2013) Conceptualizing inquiry-based educa-
tion in mathematics. ZDM—The International Journal on Mathematics
Education 45(6), 797-810.

Brown, S.I. & Walter, M.1. (2005) The Art of Problem Posing. Lawrence
Erlbaum Associates.

Duval, R. (2006) A cognitive analysis of problems of comprehension in a learn-
ing of mathematics. Educational Studies in Mathematics, 61(1-2), 103-131.

Godino, J. (1996) Mathematical concepts, their meanings, and understand-
ing. In Puig, L. & Gutierrez, A. (Eds.) Proceedings of 20th Conference
of the International Group for the Psychology of Mathematics Educa-
tion. Vol. 2, 417-425. Universidad de Valencia.

Lazonder, A. W. & Harmsen, R. (2016) Meta-analysis of inquiry-based
learning: effects of guidance. Review of Educational Research 86(3),
681-718.

Marton, F. & Tsui, A.B.M. (2004) Classroom Discourse and the Space of
Learning. Lawrence Erlbaum Associates.

Marton, F. (2015) Necessary conditions of learning. Routledge.

Schoenfeld, A. (1991) On mathematics as sense-making: an informal attack
on the unfortunate divorce of formal and informal mathematics. In Voss,
J.E.,, Perkins, D. N. & Segal, J. W. (Eds.) Informal Reasoning and Edu-
cation, 311-343. Lawrence Erlbaum.

Scott, D.M., Smith, C., Chu, M.-W. & Friesen, S. (2018) Examining the
efficacy of inquiry-based approaches to education. Alberta Journal of
Educational Research 64(1), 35-54.

Stetsenko, A. & Arievitch, I. (2002) Teaching, learning, and development:
a post-vygotskian perspective. In Wells, G. & Claxton, G. (Eds.) Learn-
ing for Life in the 21st Century: Sociocultural Perspectives on the
Future of Education, 84-96. Blackwell.

Swidan, O., Arzarello, F. & Beltramino, S. (2017) Dynamic technology for
simulating a scientific inquiry for learning-teaching pre-calculus con-
cepts. In Aldon, G. & Traglova, J. (Eds.) Proceeding of the 13th
International Conference on Technology in Mathematics Teaching, 308-
312. ENS de Lyon.





