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MATHEMATICS TEACHING–JOY IN TIMES 
OF TROUBLE? 

TIM ROWLAND

“When it’s dark enough, you can see the stars” [1] 

As I write, we live in strange and troubled times, with self-
isolation a requirement for most residents in the UK, and in 
many other parts of the world. Only recently have I learned 
that the word ‘quarantine’ derives from a dialect of 14th cen-
tury Italian, designating the period of 40 days during the 
Black Death when ships were required to be isolated in port 
before disembarkation. It denoted a state of enforced isola-
tion, intended to prevent the spread of the disease. In 2020, 
these 40 days have stretched to 50, 60, … who knows? With 
no opportunity to go out for coffee, to the cinema, theatre–
indeed, to most shops, but that makes space for a lot of 
thinking time. 

Commentators, in the newspapers and other media around 
the world, are now alerting us to the near-certainty that things 
will not be ‘as they were’ when the shops, offices, schools 
and universities, cafes and restaurants–and the rest–
reopen. But what of teaching and learning? Early in 2020, my 
own university became the first in the UK to announce that 
there would be no face-to-face lecture-hall teaching for the 
whole of the next academic year, because of the coronavirus 
pandemic. Not long afterwards, other UK universities were 
planning forms of ‘hybrid higher education’ in order to avoid 
large gatherings in confined spaces and to enable ‘physical 
distancing’. What were once ‘lectures’ would be presented to 
students in a format that could be accessed online. 

Now, these ‘lectures’ are a mode of instruction–what I 
prefer to call ‘teaching’. In an account of a mathematics les-
son with 5-year-old students, Marie Therese Farrugia (2017) 
reports having “experienced the joy of teaching very young 
children, who are quick to show appreciation and affection” 
(p. 13). In this article I describe such an experience of joy, but 
with much older, university students. For teaching is a joyous 
profession; predictably, perhaps, I feel compelled to add that 
the teaching of mathematics is–or can be–especially joy-
ous. Which brings me to what now follows. 

Some years ago, I emerged from a mathematics session 
with a class of young adults, overflowing with that sense of 
joy, and amazed that my occupation made it possible. Over 
the next few days, when I could, I reflected upon that session, 
and recorded what had happened in it. After a while, I 
realised that this might be something that I could share with 
others, in an article. 

 
About ‘joy’ 
Here, I pause to consider what it might mean to experience 
‘joy’, if only because use of the word must be unusual in the 
mathematics (education) literature. Comments from the 

‘readers’ of my first submission of this article included a 
request that I “develop a deeper conceptualisation of ‘joy’”. 
In fact I had begun to do so already, and I enjoyed (!) giving 
it further thought and effort. 

The Greek philosopher Epicurus distinguished between 
two kinds of enjoyment: the rewards of activity experienced 
whilst immersed in the activity, and those experienced after 
engaging in it. His ‘Vatican sayings’ include “In other pur-
suits, the hard-won fruit comes at the end. But in philosophy, 
delight keeps pace with knowledge. It is not after the lesson 
that enjoyment comes; learning and enjoyment happen at the 
same time” (Saying 27). So, how might joy, or delight, or 
pleasure, be related to activity? I might compare beholding a 
loaf of bread that I’ve already made with the ‘live’ pleasure 
experienced when I’m dancing or singing. Wherein is the joy 
in each case? Epicurus tells us that the joy derived from 
engaging in philosophy is of the second kind; that it is inher-
ent in the activity itself. In this article, I shall describe an 
experience of this second kind, in the activity of teaching 
mathematics, in interaction with a class of students. At least, 
that joy-in-the-moment is what I recorded in my account of 
one hour with a small class of undergraduate students. And 
yet, as I recall it, even now I experience something of Epicu-
rus’ second kind of joy, in the outcome. 

Attempting a stipulative definition, we might say that joy 
is an extreme kind of happiness. But my account here, of a 
classroom episode, comes closer to an ostensive exposition 
of ‘joy’. Wittgenstein (2009) wrote that “an ostensive defini-
tion explains the use–the meaning–of a word if the role the 
word is supposed to play in the language is already clear”  
(¶ 30). An ostensive definition consists of an example of the 
object under consideration. Like ‘love’, perhaps, maybe we 
only come to know what ‘joy’ is by experiencing it. 

One final comment, before I move on. The philosopher 
Bertrand Russell (1919) captured the (or his) experience of 
joy in engaging with mathematics as follows, “Mathematics, 
rightly viewed, possesses not only truth, but supreme beauty 
[…] The true spirit of delight, the exaltation, the sense of 
being more than Man, which is the touchstone of the highest 
excellence, is to be found in mathematics as surely as in 
poetry.” (p. 60). But for the moment, in what follows, I am 
not so much reflecting on joy in doing or learning mathemat-
ics, but in assisting others to do so. 

 
An article? 
For some time, something prevented me from writing- 
to-share. Eventually I realised what was inhibiting me. It 
was this: I had recorded something personal, and I found it 



difficult to distance myself from what I had written. Worse, 
I feared that the style might be too self-congratulatory; I had 
done some teaching, and felt good about what had happened. 
I put the ‘article’ to one side, somewhere on my hard drive, 
probably in good company. But that sense that there was 
something worth sharing persisted. 

One influence that encouraged me to return to what I had 
written was a chapter by Bob Burn (2002), on the possibility 
of the genesis of ‘new’ mathematics in university mathematics 
classrooms. Burn refers to Hans Freudenthal’s distinction 
between three different phenomena in mathematics education: 

1. The articulation of formal structures, their logical 
connections and their applications are the sub-
stance of the phenomenon of mathematics. 

2. The interactions between teacher and student, and 
the activities engineered by the teacher for the stu-
dent are a didactical phenomenon. 

3. The experiences that the student goes through in 
learning some mathematics are a genetic phenome-
non of a psychological nature. (Burn, 2002, p. 21) 

Freudenthal writes, “No mathematical idea has ever been 
published in the way it was discovered” (1983, p. ix). 

Burn comments: 

Freudenthal claimed that mathematical practice often led 
to a didactical inversion in which the genetic sequence 
was reversed in exposition. […] The best pedagogy is 
informed by knowledge of both genetic and formal 
structure and the difference between them. (p. 21) 

What follows is an account of teaching which was under-
pinned by a desire to resist that didactical inversion, despite 
its elegance and temporal economy–a conscious effort to 
respect the genetic sequence, and to observe and describe the 
didactical phenomenon. 

First, I should explain that I was enjoying the luxury of 
teaching mathematics to small classes of about 25 students. 
‘My’ students were learning to be teachers of young(ish) chil-
dren within the age-range 5 to 13. They had already 
experienced success as mathematicians at school, so as to 
achieve their university places. Now they were learning to be 
mathematicians in a university context. Hopefully, they were 
also learning to be learners themselves. Arguably, the distinc-
tions between the different kinds of learning are false. How 
can one teach mathematics without knowing (some) mathe-
matics? How can one know what is required of a teacher 
without awareness of what it is to learn? How can one 
become a mathematician in the absence of knowledge about 
how to learn it? These questions are intended to be rhetorical, 
yet, in each case, it is clearly possible to function in the first 
domain in the absence of sensitivity to the second. I return to 
these issues later. 

 
The mathematics lesson 
That day, in the classroom, I experienced something very 
good. It felt good at the time, and I write about it now 
because the sense of its being special persists. 

My ‘lesson’ was with a class of first-year undergraduate 
students who intend to become teachers in primary or middle 

schools. Many (or most) of them were not long out of school; 
I smiled inwardly when, on occasion, one of them spoke of 
my ‘lessons’, our times together which the system dignifies 
with the name of ‘lecture’. In fact, both ‘lesson’ and ‘lecture’ 
derive from the same Latin root legere, ‘to read’. Since I had 
no intention of reading notes at them, both names seem inap-
propriate. We might speak of a ‘session’. This time the root is 
sedere, to sit. Yes, they did sit most of the time, and so did I 
whenever an opportunity presented itself. 

The mathematics belongs to the Theory of Numbers–
accessible, but not trivial. It is pertinent to remark that this is 
an area of mathematics that fascinates me, to which I have 
significant personal commitment. To teach it is not a chore, 
but a privilege, and in saying so I am not indulging in hyper-
bole. For me, the Theory of Numbers has been an inner 
laboratory, more like a playground, in which I experimented 
and theorised as an adolescent. In my late teens I first discov-
ered the existence of books on primes, divisibility and the 
like, and I then studied number theory as an undergraduate, 
and eventually returned to it as a teacher. 

The topic under scrutiny with this first year class is the 
Euler function, usually denoted φ. The function can be 
approached and subsequently defined in a number of ways, 
but the following needs least introduction: for any natural 
number n, φ(n) is the number of integers in the range 1 to n 
which share no factor (apart from 1) with n. Thus, φ(6) = 2, 
because 1 and 5 are the only positive integers less than and 
‘coprime’ with 6. In principle, φ(n) can always be evaluated 
by inspection of a list of the integers from 1 to n, but this can 
be a tedious task if n is large. The purpose of the session was 
to arrive at a more ‘efficient’ way of finding φ(n) in such 
cases. The previous session had concluded with agreement 
that, when p is a prime number,φ (p) = p — 1. It was a straight-
forward inductive inference from a couple of examples, and 
an explanation was articulated without undue difficulty by 
the students whom I questioned. 

Following a short review of where we’d got to with 
φ(p) = p — 1, I suggested that we went on to consider φ(p2). I 
asked them to find φ(9) and φ(25), and to make and write 
down a conjecture about φ(p2), to discuss it with a col-
league–as one does. (You might like to try it yourself, before 
proceeding.) 

In discussion with groups of students, and then with the 
whole class, they proposed that φ(p2) = p2 — p, as an inductive 
inference (Rowland, 1999) from the data φ(9) = 6, 
φ(25) = 20. I had prepared to ‘give’ them a ‘generic’ proof (of 
which more later) but one of the students, Hadley, had 
already offered me one earlier (he called it an ‘explanation’) 
when I had spoken to his group. I had congratulated him on 
his insight, and asked whether he would be prepared to share 
it with the class. He had groaned in mock dismay. Neverthe-
less, I asked him to say why it was clear to him that 
φ(p2) = p2 — p for any prime p. Hadley rose from his chair and 
walked to the whiteboard. From my chair at one of the tables, 
I passed him a pen. 

Hadley hesitated, then wrote 1 2 3 4 5 6 7 8 9, and went on 
to say that the numbers in this list that are not coprime with 9 
are the multiples of 3, and there are 3 of those because 9 
divided by 3 is 3. That leaves 9 — 3 numbers that are coprime, 
so φ(9) = 9 — 3. And it would be the same for 25, added 
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Hadley. In the list of numbers from 1 to 25, only the 5 multi-
ples of 5 are not coprime with 25. 

Hadley’s proof is by ‘generic example’–a confirming 
instance of a proposition, carefully presented so as to provide 
insight as to why the proposition holds true for that  
single instance. The class was familiar with the term, and the 
intention behind embedding a general argument within a par-
ticular case. 

The generic example involves making explicit the rea-
sons for the truth of an assertion by means of operations 
or transformations on an object that is not there in its 
own right, but as a characteristic representative of the 
class. (Balacheff, 1988, p. 219, italics added) 

I thanked Hadley, and asked the class something like “Is 
that OK?”. I then asked whether Hadley’s examples enabled 
them to ‘see’ why the argument would ‘work’ with any prime-
square number. What I actually asked them was whether, for 
them, Hadley’s example was indeed ‘generic’, having intro-
duced them to the term in a previous course on mathematical 
processes, and referred to it often in discussing proofs. 

It then occurred to me, not to tell them what we would do 
next, but to ask what they thought we might do. Emma 
replied, “Look at p-cubed”. It has to be said that I was 
pleased, more than pleased, because this was precisely what 
I had in mind. I had a sense that their agenda for enquiry–
well, Emma’s, at least–was the same as mine. 

I asked them how we might go about ‘looking’ at cubes of 
primes. What approaches came to mind? Hadley suggested, 
presumably in keeping with the earlier approach to squares of 
primes, that we might first evaluate φ(27), then perhaps 
φ(125), and try to make a conjecture. What else might we do, 
I asked. Abby suggested that we could look at Hadley’s proof 
for p2, and see whether it could be adapted. 

Inside, I was elated, for these were the two approaches–
the only two–that had occurred to me seconds before I had 
asked them for suggestions. The sense of unity of purpose 
was amazing. I invited them to go ahead with Hadley’s sug-
gestion, or Abby’s, whichever appealed to them, working in 
pairs or threes if possible. The subsequent class discussion 
centred on Abby’s approach. The numbers in this list 1, 2, 3, 
…, 27 that are not coprime with 27 are the multiples of 3, and 
there are 9 of those because 27 divided by 3 is 9. That leaves 
27 — 9 numbers that are coprime, so φ(33) = 33 — 32. And it 
would be the same for 53. So the argument about 3 and 3 
cubed really was seen as a ‘characteristic representative’ and 
φ(p3)  = p3 — p2 is proved by generic example. Whereas it has 
sometimes felt so difficult, this time it seemed so easy, so nat-
ural. To complete this account of the mathematics, suffice to 
say that they conjectured that φ(pk) = pk — pk — 1 for all posi-
tive integers k, and they could see how the proof would be 
accomplished for any particular value of k. 

I took a moment to let them know how all this felt from my 
perspective. I didn’t make too much of it, because that would 
have embarrassed them and, probably, me too. I just said that 
it felt very good to realise that they had been able to see the 
session as a process of enquiry to which they could make a 
significant contribution as opposed to positioning themselves 
as passive receivers of ‘my’ mathematical knowledge. That 
there seemed to be some spin-off (‘transfer’?) from the 

processes course we had engaged in the previous term, in that 
they could see in a mainstream ‘textbook mathematics’ 
course the possibility of asking “What next?”, and consider 
different options for how to proceed. 

There is, of course, a dilemma here. The teacher wants the 
students to engage in a process of enquiry, but–at the same 
time–the teacher knows what they should come to know as 
a consequence! Some time ago, in the context of science 
teaching, Rosalind Driver (1983) detected a kind of ‘intellec-
tual dishonesty’ in this dilemma. She wrote, “On the one 
hand pupils are expected to explore a phenomenon for them-
selves, collect data and make inferences based on it; on the 
other hand this process is expected to lead to the currently 
accepted law or principle” (p. 3). 

For the most part, what Driver writes is true. Whereas–as 
I have tried to show–the genetic sequence underpinned my 
pedagogy (and that of some other mathematics colleagues) in 
the lecture room, the underlying intention was that the stu-
dents would come to know and to understand the topics and 
results to be found in the standard undergraduate textbooks 
on Real Analysis, Group Theory, Vector Mechanics, Number 
Theory, and so on. In the ‘lesson’ described here, my aim was 
for the students to know and to understand results about the 
Euler function that they would find in textbooks. 

 
Induction, time, and the syllabus 
In the session described above, it took about an hour to 
conjecture that φ(pk) = pk — pk — 1 and to prove it. By conven-
tional norms of undergraduate teaching, that was an 
extravagant use of time. The previous term, I had ‘taught’ 
Wilson’s Theorem to the same class of first-year under-
graduate students. That also took the best part of an hour. 
This brief account of that session should suffice to indicate 
why it took so long. 

I began by asking the students to evaluate 4! mod 5, 
6! mod 7, 10! mod 11, and to write down a conjecture.  
The most common version of the conjecture was n!≡ 
n mod (n + 1). (The ‘for all n’ seemed to be implicit.) I asked 
them to evaluate 5! mod 6. They did, and they were visibly 
surprised by the refutation. I asked whether they could mod-
ify the conjecture. At first they homed in on the even/odd 
distinction between moduli, but trying n = 8 (i.e., modulo 9) 
led to further refutation and eventual restriction to prime val-
ues of n + 1 and n  =  12 provided a further confirming 
instance. This time, I proceeded to an interactive presentation 
of a generic proof, inviting Sonia to pick a prime between 11 
and 19. She chose 19. I got them to list 1 to 18 and work on 
inverse pairs in table-groups, during which Simon sponta-
neously explained to his colleagues why 18! had to be 18 
mod 19. I asked him to repeat his reasoning to the class, and 
to write his explanation on the whiteboard. They dutifully 
copied it. Later, I enquired what would have happened if we 
had looked at 28! mod 29. Abby talked about inverse pairs 
mod 29, and argued that 28! mod 29 would have to be 28. 
“Does everyone agree?”, I asked. They agreed. One 
shouldn’t read too much into such consent, however pleas-
ing; sometimes, they just want to get a good place in the 
queue for lunch. Nevertheless, Abby, at least, had convinced 
me that she had appropriated the proof-scheme (in the sense 
of Harel & Sowder, 1998). 
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The next day, at a tutorial meeting, I asked five members 
of the class to write out the proof, that p! ≡ p — 1 mod p (for 
primes p), in conventional generality. Their responses were 
unaided and individual. Hannah’s response, which was typi-
cal, was as follows. 

(p — 1)(p — 2)(p — 3)(p — 4) … 2 × 1 

Every element of Mp has an inverse, because Mp is a 
group. [2] 

We know (from work on primitive roots) that only  
p — 1 has order 2. Therefore p — 1 is self-inverse. All 
other members of Mp apart from 1 must have a distinct 
inverse. 

Each inverse pair when multiplied gives 1 mod p. 

This gives (p — 1)(1½(p — 3))1 ≡ (p — 1)! mod p 

Therefore (p — 1)! ≡ (p — 1) mod p 

But what about the time? Of course, for Wilson’s Theorem 
and for the Euler function, I could have stated the result and 
proved it formally in five minutes. Time is precious, increas-
ingly so as lecturers’ time is spread thinly across courses and 
programmes. Moreover, their research will determine their 
prospects of promotion more than their teaching. Elsewhere 
(Rowland & Hatch, 2007) I have described an experience of 
‘mathematical investigation’, in the preparation of a paper 
submitted to a mathematics teachers’ journal. This was three 
years after gaining my first degree in mathematics, by which 
time I was employed at a tertiary college, teaching mathemat-
ics to young prospective elementary school teachers. I wrote: 

In retrospect, this paper shows that I had gained an 
awareness of mathematical enquiry at the college that I 
am sure I had not acquired by study of advanced math-
ematics at university. It was, in effect, the seed of a 
fascination with inductive reasoning that has stayed 
with me ever since. (pp. 79—80) 

Somehow I had come to experience the genetic sequence, 
and acquired a determination that, if it were possible, my 
students would experience it in ‘my’ classrooms. 
 
What kind(s) of mathematical knowledge? 
So what do we want our mathematics students to learn? 
Answers to this question might be different for students at 
different stages in their learning–elementary, secondary, 
tertiary. One approach to an answer might address what they 
will do with their mathematical knowledge and expertise. If 
workplace application is an ambition, then knowledge of 
some of the ways that mathematics is applied–in science 
and engineering, in finance, in technology–will be priori-
tised. In any case, it will be good for students to come to 
know the distinctions between knowing that, knowing why 
and knowing how. For the mathematician, inductive reason-
ing is a form of discovery and a cause of delight, like the 
metal detectorist’s discovery of ancient coins buried in a 
field. To take an elementary example, consider sums of con-
secutive odd numbers: we find 1, 1 + 3 = 4, 1 + 3 + 5 = 9, 
1 + 3 + 5 + 7 = 16 … Yes, we have to recognise that the sums 
are square numbers, but what a surprise! Of course, we have 

yet to find whether every such sum is a perfect square, and if 
so, why. 

Many years ago, Joseph Schwab (1978) made the distinc-
tion between what he called substantive knowledge and 
syntactic knowledge. For the most part, the detail of these 
kinds of knowledge will look different in different fields of 
knowledge, The first of these includes the key facts, concepts, 
principles and explanatory frameworks of a discipline–so 
they look different in history, say, as opposed to mathematics. 
One would expect to see all of them included in undergradu-
ate mathematics education: explanatory frameworks, for 
example, could include the purpose of proof, and different 
approaches to achieving it. The second, Schwab’s ‘syntactic 
knowledge’, is knowledge about the nature of enquiry in the 
field, and the mechanisms through which new knowledge is 
introduced and accepted in the relevant disciplinary commu-
nity. This second kind of knowledge would be expected to be 
acquired in graduate study and research, and yet syntactic 
knowledge of how learners encounter and acquire new knowl-
edge is vital to all teachers. For teachers of mathematics, it 
includes knowledge about inductive and deductive reasoning, 
the affordances and limitations of exemplification, and prob-
lem-solving heuristics and proof. I suggest that at all grades, 
and in tertiary education in particular, the acquisition of sub-
stantive and syntactic knowledge should be on the agenda. 
Both were evident in that lesson on the Euler function and as 
I saw both of them flourish, ‘joy’ was the word that captured 
my response to that shared experience. 

 
Closing thoughts 
In 1661, Isaac Newton came as a student to Trinity College, 
Cambridge. He paid his way by working part-time as a col-
lege servant until he was awarded a scholarship in 1664. In 
the following year, Newton gained his Bachelor’s degree, 
and the Great Plague broke out in England, with 100,000 
deaths. Cambridge University closed as a precaution, and 
Newton was reduced to studies-in-isolation at his home in 
Woolsthorpe, where his twice-widowed mother had raised 
him. In the next two years, seemingly without the benefit of 
online resources from his university, Newton began to 
develop his theories of calculus, optics, and of gravitation 
[3]. He returned to Cambridge in 1667 as a senior member of 
his College. 

Well, it would be optimistic to generalise from the particu-
lar case of Isaac Newton. But somewhere in his pre-pandemic 
years, Newton had evidently learned how to learn–to be 
curious, to know what might be a good question, a good 
problem, and how to set about solving problems and answer-
ing questions, to develop ‘answers’, or theories, to explain 
why the world was the way he observed it to be. Which is 
where I came in–in the same city at least–mathematics 
teaching, including university mathematics teaching, is at its 
best when it is more than telling, more than ‘delivering’ con-
tent for the student to rehearse and reproduce. Research by 
Burn and Wood (1995) might justify some optimism as we 
try to teach and to learn in ‘lockdown’; in their study of 
undergraduate mathematics student experiences at two uni-
versities, just one course was found to have earned 
unqualified student admiration. It was given by a lecturer 
who acknowledged that he could not provide a worthwhile 
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student experience within the given time constraints. He had 
developed interactive lecture notes and had toyed with the 
idea of abolishing lectures altogether. The Digital Education 
Research Group at the University of Edinburgh seems to 
have anticipated–and welcomed–the current prevalence of 
online teaching and learning by a decade. Their ‘Manifesto 
for teaching online’ (Bayne et al., 2020) expounds 21 state-
ments, beginning with “Distance is a positive principle, not a 
deficit. Online can be the privileged mode”. They argue that, 
in several respects, online teaching and learning is more equi-
table than face-to-face instruction, and that “freedom from 
the requirement for physical and temporal co-presence can 
work to the benefit of many, much of the time” (p. 12). 

Person-to-person instruction, whether online or face-to-
face, is both a cognitive and an affective experience for all 
participants–teacher(s) and student(s). In her 2011 FLM 
article, Julie Long considered what it might mean to ‘care’ for 
a student by attending to their learning of mathematics. I 
have tried to describe ‘care’ of that kind in my management 
of a class encounter with the Euler function. In her recent 
book, Anne Watson writes, “If I can communicate my enthu-
siasm for mathematics within a positive and caring 
relationship, those for whom I am caring can understand that 
such enthusiasm is possible and may even join in” (2021, p. 
79). At its most joyous and enjoyable, mathematics teach-
ing–whether in one room or at a distance–can enable the 
student to explore, to investigate and engage with examples, 
to find inductive reasoning irresistible, to know the epiphanic 
experience of constructing a generic example. Drawing on 
Nel Noddings (2003), Long reminds us that “reciprocity is 
one feature of a caring relationship. Reciprocity traces the 
movement of care–literally the give and take of the relation-
ship. Care is not unidirectional; when the person receiving 
the care–for example, a student– acknowledges and recog-
nizes the care, he or she completes the relationship” (2011,  
p. 2). In retrospect, I believe that reciprocity of this kind was 
present in the engagement of Abby, Emma, Hadley, and oth-
ers perhaps, thereby enabling their ‘teacher’ to experience 
joy–in that moment, and even now, in retrospect.

Notes 
[1] Attributed to Charles A. Beard in ‘Condensed history lesson’, Readers’ 
Digest, February 1941, p. 20 
[2] Recall the notation Mp for the group {1, 2, 3, …, p — 1} under multipli-
cation mod p. 
[3] Some scholars have questioned the veracity of Newton’s own account of 
his annus mirabilis, which is held in the archives of the Cambridge Univer-
sity Library (Westfall, 1980). 
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