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Is the natural number 7 rational? Is it complex? Based on 
our experiences with many students and teachers, we expect 
that most readers will answer affirmatively to both ques-
tions. This might relate to a common way of teaching, 
where a new kind of numbers is presented as an expansion 
of a previously familiar kind, resulting in a nested image of 
number sets (see Figure 1). In this article, we introduce an 
alternative perspective, in which one transitions between 
different numerical domains, some subsets of which are iso-
morphic. 

 
The metaphor of expansion 
Many scholars (e.g., Lakoff & Núñez, 2000) argue that 
mathematics emerges from communication, which is replete 
with metaphors. Drawing on experiences that are expected 
to be common to the communicating actors, metaphors can 
open the door even to the most abstract mathematical ideas. 
This feature turns metaphors into powerful didactical tools 
that become handy, both when new numbers are introduced, 
and when they are related to numbers that students are 
already familiar with.   

In instructional settings, new kinds of numbers are often 
‘grown’ from an expansion of the concept of number. That 
is, novel elements are introduced to a familiar number set 
yielding its expansion. For instance, González-Martín, 
Giraldo & Souto (2013) maintain that, 

The learning of different sets of numbers can be seen as 
a progressive extension of the initial perception of 
numbers through the algebraic structure of nested num-
ber sets, from the primitive notion of counting, to the 
ideas of comparing, measuring and solving equations 
(p. 230). 

At least three reasons can be offered for the didactical 
appeal of expanding students’ concept of number. First, dif-
ferent number sets share many familiar number-symbols, 
words, related concepts, and properties (e.g., commutativity, 
associativity, identity). This allows teachers to develop new 
numbers out of the ones that students are already familiar 
with. Second, the expansion epitomizes mathematics as a 
highly connected and coherent body of structural relation-
ships. Given that numbers accompany students’ learning all 
the way from kindergarten to university, every encounter 
with new numbers turns into an opportunity to perpetuate 
this image. Third, this perspective aligns well with a com-

mon narrative in which new numbers are positioned as a 
patch that resolves issues and inadequacies with numbers of 
the ‘old’ kind. Naturals do not allow subtracting a larger 
number from a smaller one, hence the integers. Not all divi-
sions of two natural numbers result in a natural number, 
hence the rationals. While bearing some resemblance to the 
development of numbers throughout mathematical history 
(e.g., Kline, 1972), an expansion of the familiar presents a 
sensible rationale for introducing new numbers. 

As with any metaphor taken literally, expansion comes 
with its issues. For instance, it draws attention to the intro-
duced add-ons, while glossing over the changes that they 
impose on the familiar structure. This might at least par-
tially explain why students often assume that their 
previously held truths about numbers remain intact. At the 
elementary school level, well-documented examples con-
cern the notions of successor and density that children 
‘carry over’ from natural to rational numbers. For instance, 
pupils can claim that 2.4 is the next number after 2.3 and 
that 7.5 is the only number between 7.4 and 7.6 (Vamvak-
oussi & Vosniadou, 2010). Similar phenomena occur in a 
more advanced context. Kontorovich (2018a) showed that 
many tertiary students continue referring to complex num-
bers with a zero imaginary part as positive and negative. In 
fact, some of his participants even became irritated with the 
questionnaire specifying the number set for each question 
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Figure 1. Nested image of number sets.
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and lamented, “Why do you always mention whether it’s 
ℝor ℂ? 2 is positive no matter where!”.  

In research and practice, the exemplified ways of thinking 
are often stigmatized as products of students’ ‘bias’, 
‘naivety’, and ‘overgeneralization’. However, we suggest 
that the metaphor of expansion may have a role in develop-
ing these ways of students’ thinking. It seems more 
reasonable to expect expansion to enrich familiar concepts 
rather than to transform them beyond recognition. Of course, 
a diligent teacher will emphasize the ways in which new 
numbers are different from the ‘old’ ones. Yet, it is still not 
easy to keep track of what changes and what remains valid 
after the expansion. For instance, the NCTM (2000) Stan-
dards prescribe understanding complex numbers as 
solutions to quadratic equations that do not have real-num-
ber roots. Students are usually introduced to the quadratic 
formula in the system of real numbers. Accordingly, it seems 
to be taken for granted that the quadratic formula remains 
intact even after allowing taking square roots of negative 
numbers—one of the most prominent taboos of reals. 

 
The metaphor of transition 
The issues that we described in relation to the expansion 
metaphor appear serious enough to consider whether it is the 
only way to teach new numbers. The alternative that we 
bring forward is the metaphor of transition. Within it, stu-
dents are not asked to mobilize familiar numbers to 
engender new ones but instead encouraged to depart from 
one numeric set to arrive at another. Transitions take place 
between distinct domains, situating the differences between 
them as an expected norm rather than abnormality. For trav-
elers, an appreciation of transition implies that the 
destination is foreign, and its mysteries are waiting to be dis-
covered. It also means that the luggage carried from the port 
of departure should be selected carefully since not every-
thing will continue to be useful. Overall, for the sake of a 
positive experience, transitioning students had better be 
attentive and alert to the rules and customs of the foreign ter-
rain, as these are likely to be different from the ones they are 
familiar with. This is not to say that similarities between the 
new and the old will not be recognized. Such instances 
would be a pleasant surprise, enabling students to leverage 
previously gained knowledge and experiences to act fluently 
in new circumstances. 

The transition metaphor may be viable for introducing 
new kinds of numbers. Specifically, it may offer a cohesive 
frame to attune students’ mindsets to the encounter with new 
number-names, symbols, and operations; to enhance their 
readiness to adjust and make sense of new number rules; and 
to explain why some familiar mathematical truths should be 
lost in transition. Transition also provides a room to grow 
insights and appreciations of the familiar kind of numbers 
from the newly developed perspective. 

To illustrate the metaphor of transition, let us consider an 
example where a somewhat extreme attempt is made to dis-
connect the real and the complex numbers. Imagine a teacher 
who welcomes students to a new mathematical domain con-
sisting of dots residing on a plane with one special dot O. 
“What can be done with them?”, students ask. “Well, there is 
one operation we can do, let’s call it ‘hibur’.” Then, the 

teacher shows how ‘hibur’ of the dots z1 and z2 yields 
another dot z3 via a so-called parallelogram law (see Figure 
2). Through guided investigation, students can find out that 
‘hibur’ is associative, commutative, and ‘hibur’ of O to any 
dot leaves this dot intact. To impede students from carrying 
over ‘old’ meanings of the concept, the teacher refrains from 
referring to dots as numbers. Instead, the teacher invites stu-
dents to consider whether familiar numerical domains have 
something in common with the new world of dots. To sup-
port this process of discerning similarities, the teacher might 
suggest that they explore how ‘hibur’ works  on two points 
lying on a line through O. They will see that this ‘flat’ ver-
sion of the parallelogram law behaves like the addition of 
real numbers on a number line. This might also be a good 
time to reveal that ‘hibur’ is ‘addition’ in Hebrew. 

We acknowledge that teaching with the metaphor of tran-
sition in mind is likely to raise issues of its own. Supporting 
students in establishing productive relations between differ-
ent kinds of numbers is probably among the first issues to 
emerge. Teaching experiments are needed to show what 
these issues can look like and how they can be handled. 
What we wonder about is whether students who transitioned 
between numerical sets will adhere to the above-mentioned 
ways of thinking as students for whom the concept of num-
ber was expanded. Another point to consider is how the rules 
of new numbers can be harnessed to make students re-appre-
ciate numbers of the familiar kind.  

 
Images underpinning the relations between 
number sets 
We draw on the notion of subset to illuminate the mathemat-
ical grounds for the metaphors of expansion and transition. 
To recall, the set A is called a subset of the set B if every ele-
ment in A is also an element in B. The expansion metaphor 
draws on the nested relationship among number sets, com-
monly visualized as presented in Figure 1. Natural numbers 
are a subset of integers, which are a subset of rationals, 
which are a subset of reals, which in turn is a subset of com-
plex numbers. To be explicit, we consider the subset relation 
of numbers as a mathematical stance rather than a deduc-
tively derivable result. Within this perspective, recognizing 
7 as an element of natural numbers warrants it being an inte-
ger, rational, real, and complex number. 

This recognition may become easier or harder depending 
on how numbers are represented. For instance, when num-
bers appear as dots, the dot entitled ‘7’ remains fixed when 
the natural number line extends to the negative direction to 
become the integer line. The ‘7’ dot stays in place when the 
dotted line becomes dense with rationals and reals, even 
when it expands to become the complex plane. The situation 
is different when symbolic representation starts playing a 

Figure 2. z3 as a result of the ‘hibur’-operation between z1 
and z2.
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more significant role, especially when different kinds of 
numbers are defined through symbols. For instance, com-
plex numbers are often characterized by a real and an 
imaginary part. Then, ‘7+0i’ and ‘7’ become different repre-
sentations of the same mathematical object. In this sense, 
one could argue that 7+0i is 7, in more or less the same way 
that ‘seven’ in English is ‘sept’ in French.  

The transition metaphor draws on an image in which dif-
ferent number sets are isomorphic to some subset of another. 
To recall, two sets are isomorphic if there exists a bijection 
between their elements that preserves a binary relationship 
(e.g., addition or multiplication). Figure 3 shows this rela-
tion with an example in real and complex numbers. From 
this standpoint, the natural 7 is different from the rational 7 
(or 7⁄1) and from the complex 7 (or 7+0i). Even so, these 
numbers could be considered equivalent if one wishes to 
identify them as such. Similarly, the relationship between 
natural and rational numbers is captured by considering nat-
urals as isomorphic to a subset that, mathematically 
speaking, is perfectly embedded in rationals. 

An isomorphic image can help to resolve what may 
appear as an issue with the nested view on numbers. Zazkis 
(1998) discussed an incident where her students, pre-service 
teachers, disagreed about the quotient in the division 12 by 
5. Some of the students argued for 2 with a whole-number 
quotient in mind, while others preferred 2.4, implicitly 
assuming rational-number division. In a similar vein, Kon-
torovich (2018b) reports on a student who struggled to cope 
with the fact that √9 was 3 when approached as the (real) 
square root function, but the application of De Moivre’s for-
mula on the complex 9 entailed 3 and –3. In both cases, the 
difference of the results is an issue in the nested number 
image, but not necessarily with the isomorphic view. 
Through the latter lens, identical words and symbols can be 
interpreted differently in different number sets. 

Specific images of the relation between number sets 
underpin mathematical software. In MAPLE, the command 
isprime tests for whether the input is a prime number. Work-
ing with an older version of MAPLE, we witnessed that it 
put out ‘true’ for isprime(7), but ‘false’ for isprime(14/2), 
isprime(7.0) and isprime(3.5×2). This occurred because the 
programmers intended for isprime to operate with integer 
arguments. In MAPLE, the result of division was considered 
a rational number, so that 14⁄2, and similarly 7.0 and 3.5×2, 

were not identified with an integer 7. Such programming 
may appear infelicitous to those adhering to the nested 
image. One might wonder, if all the four inputs point at the 
same number, why are their outputs not the same? The devo-
tees of the isomorphic image may be more accommodating 
since for them the integer 7 and rational 7 are different num-
bers a priori [1].  

 
Concluding remark  
We started with a question, whether the natural number 7 is 
also rational and complex, and we have argued that the 
answer depends on the metaphoric lens through which one 
considers relations between number sets. We hope that the 
readers will share our curiosity in the metaphor of transition 
as a refreshing alternative to the hegemonic metaphor of 
expansion. The nested and isomorphic images underpinning 
the metaphors may appear conflicting, but we consider them 
as complementary viewpoints—one from ‘above’ and one 
from ‘aside’—on the same mathematical structure (see Fig-
ure 4). Furthermore, we believe that, for the learning of 
mathematics, it is useful for students and teachers to be able 
to flexibly switch between the two images. 
 
Note 
[1] The current version of MAPLE has sidestepped this issue by requiring 
that the input of isprime must be an integer. 
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Figure 4. Visualization of relations between number sets.

FLM 41(1) - March 2021.qxp_FLM  2021-01-27  7:51 PM  Page 49




