FROM ONE KIND OF NUMBERS TO ANOTHER: THE METAPHORS OF EXPANSION AND TRANSITION

IGOR' KONTOROVICH, RINA ZAZKIS, JOHN MASON

Is the natural number 7 rational? Is it complex? Based on our experiences with many students and teachers, we expect that most readers will answer affirmatively to both questions. This might relate to a common way of teaching, where a new kind of numbers is presented as an expansion of a previously familiar kind, resulting in a nested image of number sets (see Figure 1). In this article, we introduce an alternative perspective, in which one transitions between different numerical domains, some subsets of which are isomorphic.

The metaphor of expansion

Many scholars (e.g., Lakoff \& Núñez, 2000) argue that mathematics emerges from communication, which is replete with metaphors. Drawing on experiences that are expected to be common to the communicating actors, metaphors can open the door even to the most abstract mathematical ideas. This feature turns metaphors into powerful didactical tools that become handy, both when new numbers are introduced, and when they are related to numbers that students are already familiar with.

In instructional settings, new kinds of numbers are often 'grown' from an expansion of the concept of number. That is, novel elements are introduced to a familiar number set yielding its expansion. For instance, González-Martín, Giraldo \& Souto (2013) maintain that,

The learning of different sets of numbers can be seen as a progressive extension of the initial perception of numbers through the algebraic structure of nested number sets, from the primitive notion of counting, to the ideas of comparing, measuring and solving equations (p. 230).

At least three reasons can be offered for the didactical appeal of expanding students' concept of number. First, different number sets share many familiar number-symbols, words, related concepts, and properties (e.g., commutativity, associativity, identity). This allows teachers to develop new numbers out of the ones that students are already familiar with. Second, the expansion epitomizes mathematics as a highly connected and coherent body of structural relationships. Given that numbers accompany students' learning all the way from kindergarten to university, every encounter with new numbers turns into an opportunity to perpetuate this image. Third, this perspective aligns well with a com-

Figure 1. Nested image of number sets. mon narrative in which new numbers are positioned as a patch that resolves issues and inadequacies with numbers of the 'old' kind. Naturals do not allow subtracting a larger number from a smaller one, hence the integers. Not all divisions of two natural numbers result in a natural number, hence the rationals. While bearing some resemblance to the development of numbers throughout mathematical history (e.g., Kline, 1972), an expansion of the familiar presents a sensible rationale for introducing new numbers.
As with any metaphor taken literally, expansion comes with its issues. For instance, it draws attention to the introduced add-ons, while glossing over the changes that they impose on the familiar structure. This might at least partially explain why students often assume that their previously held truths about numbers remain intact. At the elementary school level, well-documented examples concern the notions of successor and density that children 'carry over' from natural to rational numbers. For instance, pupils can claim that 2.4 is the next number after 2.3 and that 7.5 is the only number between 7.4 and 7.6 (Vamvakoussi \& Vosniadou, 2010). Similar phenomena occur in a more advanced context. Kontorovich (2018a) showed that many tertiary students continue referring to complex numbers with a zero imaginary part as positive and negative. In fact, some of his participants even became irritated with the questionnaire specifying the number set for each question
and lamented, "Why do you always mention whether it's Ror \mathbb{C} ? 2 is positive no matter where!".

In research and practice, the exemplified ways of thinking are often stigmatized as products of students' 'bias', 'naivety', and 'overgeneralization'. However, we suggest that the metaphor of expansion may have a role in developing these ways of students' thinking. It seems more reasonable to expect expansion to enrich familiar concepts rather than to transform them beyond recognition. Of course, a diligent teacher will emphasize the ways in which new numbers are different from the 'old' ones. Yet, it is still not easy to keep track of what changes and what remains valid after the expansion. For instance, the NCTM (2000) Standards prescribe understanding complex numbers as solutions to quadratic equations that do not have real-number roots. Students are usually introduced to the quadratic formula in the system of real numbers. Accordingly, it seems to be taken for granted that the quadratic formula remains intact even after allowing taking square roots of negative numbers-one of the most prominent taboos of reals.

The metaphor of transition

The issues that we described in relation to the expansion metaphor appear serious enough to consider whether it is the only way to teach new numbers. The alternative that we bring forward is the metaphor of transition. Within it, students are not asked to mobilize familiar numbers to engender new ones but instead encouraged to depart from one numeric set to arrive at another. Transitions take place between distinct domains, situating the differences between them as an expected norm rather than abnormality. For travelers, an appreciation of transition implies that the destination is foreign, and its mysteries are waiting to be discovered. It also means that the luggage carried from the port of departure should be selected carefully since not everything will continue to be useful. Overall, for the sake of a positive experience, transitioning students had better be attentive and alert to the rules and customs of the foreign terrain, as these are likely to be different from the ones they are familiar with. This is not to say that similarities between the new and the old will not be recognized. Such instances would be a pleasant surprise, enabling students to leverage previously gained knowledge and experiences to act fluently in new circumstances.

The transition metaphor may be viable for introducing new kinds of numbers. Specifically, it may offer a cohesive frame to attune students' mindsets to the encounter with new number-names, symbols, and operations; to enhance their readiness to adjust and make sense of new number rules; and to explain why some familiar mathematical truths should be lost in transition. Transition also provides a room to grow insights and appreciations of the familiar kind of numbers from the newly developed perspective.

To illustrate the metaphor of transition, let us consider an example where a somewhat extreme attempt is made to disconnect the real and the complex numbers. Imagine a teacher who welcomes students to a new mathematical domain consisting of dots residing on a plane with one special dot O. "What can be done with them?", students ask. "Well, there is one operation we can do, let's call it 'hibur'." Then, the

Figure 2. z_{3} as a result of the 'hibur'-operation between z_{1} and z_{2}.
teacher shows how 'hibur' of the dots z_{1} and z_{2} yields another $\operatorname{dot} z_{3}$ via a so-called parallelogram law (see Figure 2). Through guided investigation, students can find out that 'hibur' is associative, commutative, and 'hibur' of O to any dot leaves this dot intact. To impede students from carrying over 'old' meanings of the concept, the teacher refrains from referring to dots as numbers. Instead, the teacher invites students to consider whether familiar numerical domains have something in common with the new world of dots. To support this process of discerning similarities, the teacher might suggest that they explore how 'hibur' works on two points lying on a line through O. They will see that this 'flat' version of the parallelogram law behaves like the addition of real numbers on a number line. This might also be a good time to reveal that 'hibur' is 'addition' in Hebrew.

We acknowledge that teaching with the metaphor of transition in mind is likely to raise issues of its own. Supporting students in establishing productive relations between different kinds of numbers is probably among the first issues to emerge. Teaching experiments are needed to show what these issues can look like and how they can be handled. What we wonder about is whether students who transitioned between numerical sets will adhere to the above-mentioned ways of thinking as students for whom the concept of number was expanded. Another point to consider is how the rules of new numbers can be harnessed to make students re-appreciate numbers of the familiar kind.

Images underpinning the relations between number sets

We draw on the notion of subset to illuminate the mathematical grounds for the metaphors of expansion and transition. To recall, the set A is called a subset of the set B if every element in A is also an element in B. The expansion metaphor draws on the nested relationship among number sets, commonly visualized as presented in Figure 1. Natural numbers are a subset of integers, which are a subset of rationals, which are a subset of reals, which in turn is a subset of complex numbers. To be explicit, we consider the subset relation of numbers as a mathematical stance rather than a deductively derivable result. Within this perspective, recognizing 7 as an element of natural numbers warrants it being an integer, rational, real, and complex number.

This recognition may become easier or harder depending on how numbers are represented. For instance, when numbers appear as dots, the dot entitled ' 7 ' remains fixed when the natural number line extends to the negative direction to become the integer line. The ' 7 ' dot stays in place when the dotted line becomes dense with rationals and reals, even when it expands to become the complex plane. The situation is different when symbolic representation starts playing a
more significant role, especially when different kinds of numbers are defined through symbols. For instance, complex numbers are often characterized by a real and an imaginary part. Then, ' $7+0 i$ ' and ' 7 ' become different representations of the same mathematical object. In this sense, one could argue that $7+0 i$ is 7 , in more or less the same way that 'seven' in English is 'sept' in French.

The transition metaphor draws on an image in which different number sets are isomorphic to some subset of another. To recall, two sets are isomorphic if there exists a bijection between their elements that preserves a binary relationship (e.g., addition or multiplication). Figure 3 shows this relation with an example in real and complex numbers. From this standpoint, the natural 7 is different from the rational 7 (or $7 / 1$) and from the complex 7 (or $7+0 i$). Even so, these numbers could be considered equivalent if one wishes to identify them as such. Similarly, the relationship between natural and rational numbers is captured by considering naturals as isomorphic to a subset that, mathematically speaking, is perfectly embedded in rationals.

An isomorphic image can help to resolve what may appear as an issue with the nested view on numbers. Zazkis (1998) discussed an incident where her students, pre-service teachers, disagreed about the quotient in the division 12 by 5. Some of the students argued for 2 with a whole-number quotient in mind, while others preferred 2.4, implicitly assuming rational-number division. In a similar vein, Kontorovich (2018b) reports on a student who struggled to cope with the fact that $\sqrt{ } 9$ was 3 when approached as the (real) square root function, but the application of De Moivre's formula on the complex 9 entailed 3 and -3 . In both cases, the difference of the results is an issue in the nested number image, but not necessarily with the isomorphic view. Through the latter lens, identical words and symbols can be interpreted differently in different number sets.

Specific images of the relation between number sets underpin mathematical software. In MAPLE, the command isprime tests for whether the input is a prime number. Working with an older version of MAPLE, we witnessed that it put out 'true' for isprime(7), but 'false' for isprime (14/2), isprime(7.0) and isprime (3.5×2). This occurred because the programmers intended for isprime to operate with integer arguments. In MAPLE, the result of division was considered a rational number, so that ${ }^{14} / 2$, and similarly 7.0 and 3.5×2,

Figure 3. Isomorphic image of real and complex numbers.

Figure 4. Visualization of relations between number sets.
were not identified with an integer 7 . Such programming may appear infelicitous to those adhering to the nested image. One might wonder, if all the four inputs point at the same number, why are their outputs not the same? The devotees of the isomorphic image may be more accommodating since for them the integer 7 and rational 7 are different numbers a priori [1].

Concluding remark

We started with a question, whether the natural number 7 is also rational and complex, and we have argued that the answer depends on the metaphoric lens through which one considers relations between number sets. We hope that the readers will share our curiosity in the metaphor of transition as a refreshing alternative to the hegemonic metaphor of expansion. The nested and isomorphic images underpinning the metaphors may appear conflicting, but we consider them as complementary viewpoints-one from 'above' and one from 'aside' - on the same mathematical structure (see Figure 4). Furthermore, we believe that, for the learning of mathematics, it is useful for students and teachers to be able to flexibly switch between the two images.

Note

[1] The current version of MAPLE has sidestepped this issue by requiring that the input of isprime must be an integer.

References

González-Martín, A., Giraldo, V., \& Souto, A.M. (2013) The introduction of real numbers in secondary education: an institutional analysis of textbooks. Research in Mathematics Education 15(3), 230-248.
Kline, M. (1972) Mathematical Thought from Ancient to Modern Times. Oxford: Oxford University Press.
Kontorovich, I. (2018a) Roots in real and complex numbers: a case of unacceptable discrepancy. For the Learning of Mathematics 38(1), 17-19.
Kontorovich, I. (2018b) Undergraduates' images of the root concept in R and in C. The Journal of Mathematical Behavior 49, 184-193.
Lakoff, G. \& Núñez, R.E. (2000) Where Mathematics Comes from. New York: Basic Books.
National Council of Teachers of Mathematics [NCTM] (2000) Principles and standards for school mathematics. Reston VA: NCTM.
Vamvakoussi, X. \& Vosniadou, S. (2010) How many decimals are there between two fractions? Aspects of secondary school students' understanding of rational numbers and their notation. Cognition and Instruction 28, 181-209.
Zazkis, R. (1998) Divisors and quotients: acknowledging polysemy. For the Learning of Mathematics 18(3), 27-30.

