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Theoretical developments in mathematics education offer
ways to understand disjunctures between school mathematics
and the discipline of mathematics as a function of institu-
tional schooling. For example, Chevallard (1989) offers the
theoretical idea of didactical transposition for this purpose:

Bodies of knowledge are, with a few exceptions, not
designed to be taught, but to be used. To teach a body
of knowledge is thus a highly artificial enterprise. The
transition from knowledge regarded as a tool to be put
to use, to knowledge as something to be taught and
learnt, is precisely what I have termed the didactic
transposition of knowledge. (p. 56)

In Chevallard’s telling, school mathematics originates in
the discipline of mathematics. Though Chevallard empha-
sizes the creative activity needed to transform mathematics
in the discipline into school mathematics, his orientation
focuses mathematics educators on ways in which school
mathematics is a pale or weak representation of the disci-
pline. In the words of Bosch and Gascon (2006):

The process of didactic transposition starts far away
from school, in the choice of the bodies of knowledge
that have to be transmitted [...] The transpositive work
[...] makes teaching possible but it also imposes a lot
of limitations on what can be and what cannot be done
at school. It may happen that, after the transposition
process, school loses the rationale of the knowledge
that is to be taught, that is, the questions that motivated
the creation of this knowledge [...] In this case, we
obtain what Chevallard (2004) called a “monumental-
istic” education, in which students are invited to
contemplate bodies of knowledge the rationale of
which have perished in time. (p. 53)

Critiquing Chevellard’s orientation, Love and Pimm (1996)
are concerned about the directionality he suggests from dis-
cipline to school and how “it renders invisible the reverse
direction of influence” (p. 375). In this spirit, Popkewitz’s
(1987) orientation to studying what he calls the “formation
of school subjects” focuses more on what schooling adds to
disciplinary knowledge, that is, more on what has been
gained than on what has been lost. Rather than use the
imagery of transposition, he suggests that there is an
“alchemy” that operates as a result of the institution of
schooling. In his view:

Pedagogy can be thought of as analogous to the
medieval metallurgy that sought to transmute base met-
als into gold. A magical transmutation occurs as
academic knowledge is moved into the space of school-
ing. (2004, p. 4)

In Popkewitz’s imagery, alchemy transmutes the base mate-
rial of knowledge in the disciplines into the gold of school
subjects; the directionality has been shifted. For those who
consider mathematical knowledge in the discipline as the
epitome of our human capacity for reason, Popkewitz’s con-
sideration of disciplinary mathematics as a base material
from which a more valuable substance (i.e., school mathe-
matics) is created can be counterintuitive. In suggesting that
school subjects are more valuable than disciplinary knowl-
edge, Popkewitz is not judging the technological power or
the sophistication of school subjects as compared to disci-
plinary knowledge. One way to interpret his notion of school
subjects as “the gold” is that he is focusing on the social
value of school subjects. School subjects are the parts of dis-
ciplines that society has selected to indicate who is educated
and who is not. In support of that interpretation, note that in
many countries, performance with respect to school subjects
is used to determine, for example, whether a person gradu-
ates from high school or not, and that high school graduation
influences a person’s chances of increased financial rewards
in society. Thus, school subjects are “golden” in the sense
of providing the high school graduate with financial rewards
in society.

The notion of instructional situation as articulated by
Herbst (2006) further illuminates Popkewitz’s metaphor by
suggesting another sense in which school subjects are
“golden”. At the heart of instructional situations is an
exchange of student work for the teacher’s recognition of the
acquisition of knowledge. Thus, instructional exchanges
are marketplaces managed by teachers; teachers recognize
in the midst of students’ mathematical activity those actions
taken by students that “trade” as indicators of the acquisition
of the knowledge that teachers are supposed to teach. In that
sense, these student actions have become academic “gold”.

In this article, we explore the concepts introduced above
and the relationship between school mathematics and math-
ematics in the discipline by focusing narrowly on one
particular kind of activity in school algebra: the solving of
linear equations. First, we examine the nature of the solv-
ing of equations in English-language algebra text books
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from the early nineteenth century. We explore whether the
solving of linear equations was “transposed” as it moved
from an activity in the discipline to an activity in school and,
if so, how. We note the increasing presence of a specified
order of steps, which we term the canonical method for solv-
ing linear equations. Then, in examining teachers’ views of
correct, but non-canonical, student solutions valued by
mathematics educators, we explore questions like: what is
it that teachers expect students to do when solving equa-
tions? In Herbst’s terms, what “trades” as evidence that
students have learned to solve equations? And what do these
views indicate about the possibility of asking students in
schools to solve linear equations more flexibly than by sim-
ply using the canonical method? Our exploration of these
questions about the solving of linear equations suggests ini-
tial understandings of the persistent gap between the school
mathematics tradition and disciplinary practices.

The introduction of a method: an observation
and a conjecture about solving linear equa-
tions in nineteenth century algebra text books
We examined English-language algebra texts from the eigh-
teenth and nineteenth century as one way of exploring
formal records of mathematical thought and practice and
their relationship to school mathematics. Love and Pimm
(1996) view such books as “text books,” not yet the text-
books of institutionalized schooling that explicitly presume
a teacher and learners. For Love and Pimm, text books
occupy a middle ground between texts written by mathe-
maticians for mathematicians and textbooks (see Thurston,
1994, for an argument that all mathematical texts may
occupy this middle ground). Text books are texts “used for
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instruction, to which the accompanying teaching commen-
tary was provided orally by the teacher” (p. 376) [1].

In looking at the presentation of the solving of linear equa-
tions in eighteenth and nineteenth century text books, we made
this observation: over the course of the nineteenth century the
presentation of the solving of equations in English-language
algebra texts increasingly seems to include a standard method
[2] for solving simple linear equation problems.

The text books we examined from the eighteenth and early
nineteenth century present the solving of equations as the
application of a set of rules to justify the transformation of
equations (e.g., Bland, 1824; Bonnycastle, 1818; Euler,
1765/1822; Ronayne, 1717; Ward, 1724). This manner of pre-
sentation follows closely in the tradition of disciplinary
mathematical texts from the 1600s, such as works by Viéte
and Van Schooten, in laying out a set of rules for the “Reduc-
tion of Equations™ that are justified by axioms of equality, and
that can be applied to any linear equation. In these text books,
typically the rules for transforming equations are presented
in a list or in paragraphs, and then a set of example equations
are solved with reference to these rules as justification for the
steps of the solution (see Figures 1 and 2).

The nineteenth century algebra text and textbooks that
we examined included in their presentation, in addition to
axioms of equality and transformation rules, a more-or-less
standard method for solving simple linear equations (e.g.,
Davies, 1867; Peacock, 1830; Smyth, 1836; Wentworth,
1898). Thus, after the presentation of axioms and transfor-
mation rules, and their application to particular problems
(see, for example, Figure 4, overleaf), these textbooks then
include a paragraph or a rule that lists a set of steps, or
method, for solving linear equations (see Figures 3 and 4,
overleaf). With the inclusion of this presentation of a
method, the solving of linear equations is now also presented
to the reader as the application of a set of steps that should
always be carried out in a particular order.

To reiterate, our observation is about the increasing pres-
ence of a method for solving linear equations in nineteenth
century English-language algebra text books. In the earlier
text books, equations are solved by applying rules that main-
tain the equivalence of equations and which are justified by
properties of equality, while in later text books and textbooks
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Figure 1. A list of rules in an eighteenth century algebra text
book (Ward, 1724, p. 40).

Figure 2.  Two nineteenth century examples of solving equa-
tions by applying rules (Bland, 1824, p. 6).



these rules are synthesized into a method that involves a set
order in the application of these rules. The presence of this
method is consonant with Chazan and Lueke’s (2009)
description of the solving of equations in school. To capture
the difference between the synthesized method for solving
equations and solutions that use the rules more flexibly,
Chazan and Lueke describe this set order of steps as the
canonical method for solving equations taught in school
(what Star & Seifert, 2006, call the standard method for solv-
ing equations) [3].

In articulating our observation about nineteenth century
mathematical texts, we are not suggesting that textbooks
beyond the nineteenth century never treat the solving of equa-
tions as the application of a set of rules to justify
transformations of equations. In fact, it is not unusual for twen-
tieth century textbooks to introduce the subject in this way
before presenting a general method that will solve all linear
equations (e.g., Dolciani, Berman & Freilich, 1962). Our claim
is about the presence of a method for solving linear equations
as a class of problems. Thus, we note that it is very rare for
a twentieth century text to present the solving of equations
solely as the application of a set of transformational rules (as
an exception, see Hart, 1940) without also synthesizing them
into an overarching method.

At this time, we do not know when the canonical method
was invented; we have no ways of linking it to a particular
time or place or author. But we are struck by its increasing
presence, and wish to draw attention to the relationship
between this trend and the increasing development of insti-
tutionalized schooling in the nineteenth century.
Speculatively, we suggest that the increasing prevalence of
the presentation of a method for solving equations, like the
move from algebra text books to algebra textbooks, may be
explained by the development of schooling and the notion of
didactical transposition as articulated by Chevallard. We
wonder whether the increasing prevalence of a method for
solving linear equations is a marker of a shift in whom the
authors of certain mathematical texts were coming to think
of as their modal audience, as the solving of equations
shifted from a mathematical activity to an activity of school
mathematics. We conjecture that the need to have a method
for solving linear equations may have developed in parallel
with the institutionalization of schooling and the move from
mathematics text books to mathematics textbooks. In the
remainder of this article, we explore this conjecture by look-
ing at teachers’ reactions to student work that departs from
the use of the canonical method and illustrate calls for
changes in the nature of equation solving in school.

Contemporary changes to school mathematics
and calls to reform the solving of equations

Efforts to improve mathematics education over the last 25
years [4] often include attempts to move mathematics
instruction in schools closer to the practice of mathematics
in the discipline and away from the “school mathematics tra-
dition” (Gregg, 1995). For example, mathematics educators
want mathematical argumentation and justification to hap-
pen throughout the mathematics curriculum, not just in
Euclidean geometry (Healy & Hoyles, 2000; NCTM, 1989;
Pedemonte, 2008). Similarly, with a nod to disciplinary

744. The process above-mentioned may be at once
translated into the following rule.

 Clear the equation of fractions (1): transfer the
terms involving the unknown quantity to one side, and
those which do not involve it to the other (2): collect the
separate terms, in that member of the equation which in-
volves the unknown quantity, into one (3): divide both
members of the equation by the coefficient of the unknown
quantity (4), which gives the solution required.”

Figure 3. Presentation of a method for solving equations
(Peacock, 1830, p. 581).

Solution of Simple Numerical Equations in X.

1. Solve Se—T=14—4z
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Combine, 2z =6, (§ 49)
Divide by 2, =3, (Ax. 4)

57. To Solve a Simple Numerical Equation in x, therefore:
Transpose all the terms that econtain & to the left side, and

all the other terms to the right side. Combine similar terms,
and divide both sides by the coefficient of .

Figure 4. Examples and the presentation of a solution
method (Wentworth, 1898, p. 18).

practices, a focus on problem solving seeks to have students
consider multiple solution strategies for the same mathe-
matics problem (Levav-Waynberg & Leikin, 2012).

How does such rhetoric apply to the solving of linear
equations? What we have called the canonical method for
solving equations is well represented in contemporary alge-
bra textbooks. For example, in Carter ef al. (2003) in the
“Concept Summary” of “Steps for Solving Equations”, the
canonical method is described in five steps:

1. Use the Distributive Property to remove the group-
ing symbols.

2. Simplify the expressions on each side of the equals
sign.

3. Use the Addition and/or Subtraction Properties of
Equality to get the variables on one side of the
equals sign and the numbers without variables on
the other side of the equations sign.

4. Simplify the expressions on each side of the equals
sign.



5. Use the Multiplication or Division Property of
equality to solve.

If the solution results in a false statement, there
is no solution of the equation.

If the solution results in an identity, the solution
is all numbers. (p. 151)

Not all contemporary presentations of this method are iden-
tical. For example, one shift in some current presentations of
the canonical method for solving equations is that some
books introduce students to this method by categorizing
equations to solve according to the number of steps it takes
to solve them: one-step, two-step, or multi-step equations.
For example, Bellman et al., (2004) summarize the solving
of two-step equations by telling students to:

1. Use the Addition or Subtraction Property of Equal-
ity to get the term with the variable alone on one
side of the equation.

2. Use the Multiplication or Division Property of
Equality to write an equivalent equation in which
the variable has a coefficient of 1. (p. 81)

In such a book, students only meet the full method when
they are asked to solve multi-step equations.

Against the backdrop of the presence of a canonical
method for solving linear equations in textbooks, calls for
multiple solution strategies when solving equations involve
greater flexibility in the order in which rules for transforming
equations are employed. For example, some mathematics
educators (Star & Rittle-Johnson, 2008; Star & Seifert, 2006)
suggest that students would learn to solve equations more
effectively if they were taught to employ steps for producing
equivalent equations in a variety of orders, in light of the con-
text of a particular problem (see Figure 5 for one example).

Similarly, other mathematics educators would like stu-
dents to use the structure of equations in their solutions

20x +5=5x+ 65
4x+1=x+ 13
3x =12

x =4

Figure 5.  Solving equations with a flexible use of rules (a
“divide first” solution).

4(x+6)+5(x+6)=281
9(x +6) =81
x+6=9
x =3

Figure 6.  Seeing structure in an expression when solving
an equation (a “Structure ” solution).

(Hoch & Dreyfus, 2006; Linchevski & Livneh, 1999) and
to recognize when it is useful not to distribute multiplication
over addition (see Figure 6 for a solution that treats an equa-
tion as linear in x + 6).

Finally, other mathematics educators have proposed sub-
stantive changes to the teaching and learning of school
algebra, by, for example, seeking changes to what it is that
an equation means in school algebra. One proposal is that for
pedagogical reasons, an equation be conceptualized as a par-
ticular kind of comparison of two functions (e.g.,
Yerushalmy & Schwartz, 1993). With such a change, solving
an equation means finding the input value(s) for which the
two functions produce the same output. Said in a different
way, solving an equation means finding the x-coordinate of
the intersection of the graphs of the functions whose expres-
sions are on either side of the equal sign (Yerushalmy &
Gilead, 1997), or it means finding the x-intercept of the
function that is created by subtracting one of these expres-
sions from the other. This last view might lead one to
consider solving equations in the way illustrated in Figure 7,
in addition to the canonical way.

9% + 12 = 22 + 4x
9% + 12—-22—4x =0
5x—10 =0
5(x—2)=0

therefore,x = 2

Figure 7. Finding the x-intercept of the difference function
(an “all to the left” solution).

From texts and calls for reform of the solving
of equations to teachers’ views
We have conjectured that as schooling develops, the presen-
tation of the solving of equations in mathematical text books
shifts from a disciplinary focus on the justified and flexible
applications of rules to the carrying out of what we have
called the canonical method for solving equations. In the pre-
vious section, we highlighted some contemporary calls to
have school mathematics maintain a stronger connection to
the discipline and for the solving of equations to involve non-
canonical alternatives to what we call the canonical method.
In this section, we move from texts and calls for change to
exploring teachers’ views on the solving of equations. We
share representative comments from study groups and an
online survey as a way to begin to judge the feasibility of
the calls for reform against the backdrop of modal practice.
In an initial exploration, we convened five small study
groups of middle and high-school teachers from two US
school districts (see Chazan, Sela & Herbst, 2012, for a
report on discussions in these groups on doing word prob-
lems). In one session, the groups were shown an animation
of a classroom scenario in which a student solves an equa-
tion as depicted in Figure 5. The teachers in the study groups



were genuinely surprised by this solution and while they
acknowledged its mathematical correctness, expressed
reservations regarding the place of such solutions in class, as
the following comments imply:

It’s one thing to say multiple methods are valid. It’s
another thing to say that they’re all effective or that
they’re clear and simple and clean. [Laurence, HS, 21, 5]

when I’m selecting problem sets [...] I'm selecting a
strategy based on what I know of all the strategies out
there, that I think’s gonna work best for that level of
child, and if they find another way I don’t inhibit them
from- from using it, but I’'m not necessarily presenting
that method to the class. [Greg, MS, 19-21]

Reflecting on the reasons for their own reaction to the stu-
dent’s solution in the scenario, one teacher evoked the role
of the curriculum materials and textbooks:

I think a large part of why we haven’t seen students
solve equations this way is because the curriculum
guides and everything that has anything to do with the
way you’re supposed to teach them equations always
tells you, “Undo the operations. You’re working back-
wards. You’re doing the opposite of PEMDAS [A
mnemonic for order of operations: Parentheses, Expo-
nents, Multiplication, Division, Addition, and
Subtraction]” [Tina, MS, 11, 47]

To further explore this phenomenon, as part of a larger
ongoing project to design instruments to examine the prac-
tical rationality of mathematics teaching (Herbst, Kosko &
Dimmel, 2013), we have begun to develop an online sur-
vey of teachers’ views about the solving of equations [5].
One instrument we have piloted explores how algebra
teachers respond to the types of solutions presented in Fig-
ures 5, 6, and 7.

Seventy-seven practicing mathematics teachers from two
different states in the US have completed the pilot survey. All
of the teachers, except for seven teachers who specialized in
teaching more advanced school mathematics, taught a variety
of classes that include the solving of linear equations. The
teachers came from almost 30 different school districts (we
do not have information about the nature of the textbooks and
curricula in these districts, but the number of districts implies
some variation among the participants).

The pilot survey presented teachers with two sample stu-
dent solutions to the same linear equation (shown in Figure
8), one canonical and one non-canonical. These student
solutions did not come from a particular student, but rather
represent possible ways in which a student could potentially
solve the equation.

A set of closed and open-ended questions asked teachers
how typical each type of solution is, whether it is an appro-
priate solution or not, and whether it should be introduced or
discussed in class. The questions referred to each type of
solution separately and then also in comparison to each other
(e.g., Which of the two solutions is better for students to
use?). Our goal was to explore whether teachers viewed the
canonical method as what students need to master when
solving equations, and teachers’ views of the place of non-
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Figure 8. An example used in the survey of two solutions
to the same linear equation.

canonical solutions for solving linear equations in algebra
class.

Although the survey happened a number of years after the
study groups and in two states in different parts of the coun-
try, teachers’ survey responses closely resembled the study
group reactions to the animation. Regardless of the type of
non-canonical solution, the majority of teachers referred to
the non-canonical solutions in the survey as “unusual”, and
as something that the majority of their students would not
think to do on their own, unless specifically prompted. Here
are some sample responses to the open-ended questions:

I believe that while this method works, it is not the eas-
iest way to go about doing the problem. Thus, my
students probably wouldn’t do it this way even though
it is correct. [DF, 2001] [6]

This is not a method that most of my students have
seen. I would encourage them to share this and have a
conversation about it. However, most of my student
would approach it in an “undoing the steps” sort of
way. [ATTL, 2016]

Students could see that it was correct, but they wouldn’t
try this independently very often. [S, 1980]

These kinds of comments were very common and consistent
across all types of solutions [7]; 97% of the teachers indi-
cated that they would hardly ever or only occasionally
expect to see their students producing a non-canonical solu-
tion. Teachers’ responses to closed-ended and open-ended
questions suggest that they had a preference for the canoni-
cal solutions over non-canonical ones. For example, while
88% of the teachers expected more than half or even all of
their students to master the canonical method, only 14% of
the teachers had similar expectations of mastery for the non-
canonical solutions. When presented with two solutions
simultaneously and asked which one is better for solving a
given equation, the overwhelming majority of the partici-
pants (94%) rated the canonical solution higher than a
non-canonical one, regardless of the type of non-canonical
solution used. Finally, the overwhelming majority of teach-
ers who completed the survey (95%) indicated that students
demonstrate knowledge and mastery of solving equations by
producing canonical solutions.



At the same time, the nature of teachers’ comments, as
illustrated in the excerpts above, included appreciation of non-
canonical solutions. More than 8 in 10 of the teachers thought
that non-canonical solutions are mathematically appropriate,
demonstrate knowledge of solving equations, and deserve full
credit on a test. In their written comments, teachers indicated
that dividing by a common factor as a first step, whenever
there is a common factor, will lead to an equation with smaller
numbers that is easier to solve. The perceived advantages of
the “Structure” solution included reducing the number of
solution steps, and providing good preparation for more com-
plicated problems in the future; 1 in 5 teachers who compared
the “Structure” solution to the canonical version, indicated
that the former is “faster” and leads to “less possible errors”
for the equations where its application is relevant. While the
“All to the left” solution was generally less recognized as a
useful solution, some teachers saw it as preparation for more
advanced mathematical content such as factoring and solv-
ing of quadratic equations.

Overall, the teachers’ responses suggest the strong expec-
tation that all students should master what we have called
the canonical method. Consider the following two teachers’
responses:

My students need absolutes, so I give them a system that
works every time. Namely, parentheses, combining like
terms, add or subtract, then multiply or divide. [S, 2730]

I definitely teach the first [canonical] method... How-
ever, I'm willing to teach the second method
[non-canonical] as an additional option when the first is
mastered. [DF, 2760]

While these two teachers’ responses clearly differ in tone and
expressed willingness to engage with non-canonical meth-
ods, they suggest that the non-canonical solutions were
considered “secondary” methods that have a place in alge-
bra classrooms only in addition to, or after, the canonical
method is introduced or mastered. We interpret responses
such as these two as suggesting that teachers view the canon-
ical method as having special status in school as compared
to other correct mathematical ways of solving equations.

More generally, the survey responses point to the special
status, according to teachers, of what we have called the
canonical method. In Herbst’s (2006) terms, this suggests
that solutions that follow the canonical method “trade” as
evidence that students have learned to solve equations, while
correct, but non-canonical, solutions do not. In this sense,
the teachers’ responses provide evidence of the alchemical
process described by Popkewitz; the canonical method has
become the gold of school subject matter. If the canonical
method is indeed the result of such an alchemical process,
then there is some support for our earlier conjecture that the
trend toward the presentation of a method for solving linear
equations in nineteenth century text books might be related
to the growth of institutionalized schooling.

Understanding potential implications of the
teachers’ views

We conclude this article by considering calls for flexibility
in the deployment of rules for transforming equations when

solving linear equations as instances of a more general desire
to move school mathematics closer to the practice of mathe-
matics in the discipline. Herbst’s notions of instructional
situations and instructional exchanges suggest that teachers
need ways to manage the work of recognizing the acquisition
of knowledge in the buzz of student activity. It is this need
that may contribute to the reification of the canonical
method. The canonical method’s presence in mathematical
textbooks seems to be driven by a need to standardize student
work in ways that will make it easier for teachers to assess
student work and for students to know what will count as suc-
cessful solving [8]. Teachers’ expressions of preference for
solutions that are instances of the canonical method, might
thus be viewed not just as the product of their individual
views and beliefs, but rather as the result of what happens in
schooling when people take on the position of teacher and
assume responsibility for ensuring that students learn the
mathematics that the teacher is teaching.

Going back to where we began this article, the didactical
transposition suggests that particular parts of mathematics as a
discipline, like the solving of linear equations, will be identified
as the mathematics to be taught to students. The alchemy of
school subjects suggests that bits of knowledge, say the canon-
ical method, are plucked from the discipline and reshaped to
become the “gold” that teachers are responsible for teaching
as the cultural knowledge that has been deemed important.
Instructional exchanges help us understand that given teachers’
needs to support their students in learning this content and their
need to be able to transact easily the exchange that is at the
heart of the solving of equations in school, the canonical
method becomes a useful pedagogical tool. This tool allows
teachers, in the midst of classroom activity, to assess whether or
not students have learned to solve equations. Thus, the cen-
trality of the canonical method for solving equations in school
algebra can be understood as a result of ways the didactical
transposition and the alchemy of school subjects shape the
instructional exchanges that teachers manage.

Our initial study group and survey responses suggest that
calls to have students solve linear equations more flexibly
are unlikely to receive a positive response unless that sort
of flexibility can become “gold” in the same way that the
canonical method did [9]. What remains to be seen is
whether the flexibility of multiple solutions can be trans-
muted by Popkewitz’s (2004) alchemy and become the basis
for new instructional exchanges that teachers can feasibly be
asked to manage.

Notes

[1] The institutional context of such teaching may well have varied by
country; these books may have been used both for individual study and
tutoring as well as for state or church sponsored schooling of groups.

[2] We use the term method, rather than algorithm, following Chazan and
Lueke (2009). There are slight differences in the steps of the methods pre-
sented (e.g., whether denominators are cleared first or not; whether
transposition is included as one step or as two steps).

[3] In Chazan and Lueke’s (2009) description, in school, when the canoni-
cal method is being taught, following a set order of steps has perhaps
unintended consequences; the focus of student activity is on what specifi-
cally is being done to a particular equation (e.g., subtracting 5x from both
sides) to create equivalent equations; the general justifications for why
these actions to both sides of an equation are appropriate (the propositions
or rules) are not as prominent.



[4] In the US, for example, see NCTM (1989, 2000) or National Gover-
nors Association Center for Best Practices/ Council of Chief State School
Officers (2010).

[5] A detailed report is in preparation by O. Buchbinder, D. Chazan & A.
Mason-Singh.

[6] The information in the parentheses indicates the participant’s ID num-
ber and the type of non-canonical solution addressed: “Divide First” (DF),
“All to the Left” (ATTL), or “Structure” (S).

[7] In their open-ended responses, the teachers in our sample wrote about
methods not solutions. In our interpretation, they saw through the presented
particulars to a more general process.

[8] This need for tools that will aid teachers in managing an instructional
exchange is akin to Herbst’s (2002) understanding of reasons for the devel-
opment of the two column proof format for writing geometrical proofs.

[9] From our perspective, the Standards for Mathematical Practice in the
US Common Core State Standards might be viewed as just such an attempt
to make disciplinary practices into school subject gold.

References

Bellman, A., Bragg, S., Charles, R., Hall, B., Handlin, W. & Kennedy, D.
(2007) Algebra 1. Boston, MA: Pearson Prentice Hall.

Bland, M. (1824) Algebraical Problems. Cambridge, UK: Deighton &
Sons.

Bonnycastle, J. (1818) An Introduction to Algebra. New York, NY: Evert
Duyckinck, Daniel D. Smith and George Long.

Bosch, M. & Gascon, J. (2006) Twenty-five years of the didactic transpo-
sition. ICMI Bulletin 58, 51-65.

Carter, J., Cuevas, G., Casey, R., Day, R., Harris, B., Hayek, L., Holliday, B.
& Marks, D. (2003) A lgebra 1. Columbus, OH: Glencoe/McGraw-Hill.

Chazan, D. & Lueke, H. M. (2009) Exploring tensions between disciplinary
knowledge and school mathematics: implications for reasoning and
proof in school mathematics. In Stylianou, D., Knuth, E. & Blanton, M.
(Eds.) Teaching and Learning Mathematics Proof A cross the Grades, pp.
21-39. Hillsdale, NJ: Erlbaum.

Chazan, D., Sela, H. & Herbst, P. (2012) Is the role of equations in the doing
of word problems in school algebra changing? Initial indications from
teacher study groups. Cognition and Instruction 30(1), 1-38.

Chevallard, Y. (1989) On didactic transposition theory: some introductory
notes. In Steiner, H-G. & Hejny, M. (Eds.) Proceedings of the Interna-
tional Symposium on Research and Development in Mathematics, pp,
51-62. Bratislava, Czechoslavakia: Comenius University.

Davies, C. (1867) Elementary Algebra. New York, NY: A. S. Barnes &
Co.

Dolciani, M. P., Berman, S. L. & Freilich, J. & Wooton, W. (1962) Modern
Algebra: Structure and Method. Boston, MA: Houghton Mifflin.

Euler, L. (1822) Elements of Algebra. (trans. Hewlett, J.). London, UK:
Longman, Horst, Rees, Orme & Co.

Gregg, J. (1995) The tensions and contradictions of the school mathematics
tradition. Journal for Research in Mathematics Education 26(5),
442-466.

Hart, W. W. (1940) Progressive High School Algebra. Toronto, ON: Copp
Clark.

Healy, L. & Hoyles, C. (2000) A study of proof conceptions in algebra.
Journal for Research in Mathematics Education 31(4), 396-428.

Herbst, P. (2002) Engaging students in proving: a double bind on the
teacher. Journal for Research in Mathematics Education 33(3), 176-203.

Herbst, P. G. (2006) Teaching geometry with problems: negotiating instruc-
tional situations and mathematical tasks. Journal for Research in
Mathematics Education 37(4), 313-347.

Herbst, P., Kosko, K. & Dimmel, J. (2013) How are geometric proof prob-

lems presented? Conceptualizing and measuring teachers’ recognition of
the diagrammatic register. In Martinez, M. & Castro Superfine, A. (Eds.)
Proceedings of the 35th Annual Meeting of the North American Chap-
ter of the International Group for the Psychology of Mathematics
Education, pp. 179-186. Chicago, IL: University of Illinois at Chicago.

Hoch, M. & Dreyfus, T. (2006) Structure sense versus manipulation skills:
an unexpected result. In Novotna, J., Moraova, H., Kratka, M. &
Stehlikova, N. (Eds.) Proceedings of the 30th Conference of the Inter-
national Group for the Psychology of Mathematics Education, vol. 3, pp.
305-312. Prague, Czech Republic: PME.

Levav-Waynberg, A. & Leikin, R. (2012) The role of multiple solution tasks
in developing knowledge and creativity in geometry. Journal of Mathe-
matical Behavior 31(1), 73-90.

Linchevski, L. & Livneh, D. (1999) Structure sense: the relationship
between algebraic and numeric contexts. Educational Studies in Mathe-
matics 40(2), 173-196.

Love, E. & Pimm, D. (1996) ‘This is so’: a text on texts. In Bishop, A.,
Clements, K., Keitel, C., Kilpatrick, J. & Laborde, C. (Eds.) Interna-
tional Handbook of Mathematics Education, vol. 4, pp. 371-409.
Dordrecht, The Netherlands: Kluwer.

National Council of Teachers of Mathematics (NCTM) (1989) Curriculum
and Evaluation Standards for School Mathematics. Reston, VA: NCTM.

National Council of Teachers of Mathematics (NCTM) (2000) Principles
and Standards for School Mathematics. Reston, VA: NCTM.

National Governors Association Center for Best Practices/Council of Chief
State School Officers (2010) Common Core State Standards: Mathemat-
ics. Washington DC: National Governors Association Center for Best
Practices/Council of Chief State School Officers.

Peacock, G. (1830) A Treatise on Algebra. Cambridge, UK: J. & J. J.
Deighton.

Pedemonte, B. (2008) Argumentation and algebraic proof. ZDM 40(3),
385-400.

Popkewitz, T. S. (1987) The Formation of School Subjects: The Struggle
for Creating an American Institution. London, UK: Falmer Press.

Popkewitz, T. (2004) The alchemy of the mathematics curriculum: inscrip-
tions and the fabrication of the child. American Educational Research
Journal 41(1), 3-34.

Remillard, J., Herbel-Eisenmann, B. & Lloyd, G. (Eds.) (2009) Mathemat-
ics Teachers at Work: Connecting Curriculum Materials and Classroom
Instruction. New York, NY: Routledge.

Ronayne, P. (1717) A Treatise of Algebra in Two Books. London, UK: W.
Innys.

Smyth, W. (1836) Elements of Algebra. Hallowell, ME: Glazier, Masters,
and Smith.

Star, J. R. & Rittle-Johnson, B. (2008) Flexibility in problem solving: the
case of equation solving. Learning and Instruction 18(6), 565-579.

Star, J. R. & Seifert, C. (2006) The development of flexibility in equation
solving. Contemporary Educational Psychology 31(3), 280-300.

Thurston, W. P. (1994) On proof and progress in mathematics. Bulletin of
the American Mathematical Society 30(2), 161-177.

Ward, J. (1724) A Compendium of Algebra Containing Plain Easy and
Concise Rules in that Mysterious Science. London, UK: D. Browne.

Wentworth, G. A. (1898) New School A lgebra. Boston, MA: Ginn & Co.

Yerushalmy, M. & Gilead, S. (1997) Solving equations in a technological
environment: seeing and manipulating. Mathematics Teacher 90(2), 156-
163.

Yerushalmy, M. & Schwartz, J. L. (1993) Seizing the opportunity to make
algebra mathematically and pedagogically interesting. In Romberg, T. A.,
Fennema, E. & Carpenter, T. (Eds.) Integrating Research on Graphical
Representations of Functions, pp. 41-68. Hillsdale, NJ: Erlbaum.





