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OPENING A DISCUSSION ON TEACHING 
PROOF WITH AUTOMATED THEOREM 
PROVERS 

GILA HANNA, XIAOHENG (KITTY) YAN

The article argues that there is a need for new approaches to 
teaching proof, ones that capitalize not only on newly avail-
able technology but also on modern theories of teaching and 
learning. It contributes to filling this need by opening a dis-
cussion on digital proof assistants, programs that allow one 
to do mathematics with the aid of a computer, and more 
specifically to construct proofs and check their correctness. 
The article starts by introducing and exploring such proof 
assistants, then goes on to argue that they could play an 
important role in fostering students’ appreciation and under-
standing of proof and of mathematics as a whole. Finally, the 
article points out the need to develop explicit pedagogic 
strategies tailored to assist teachers in deploying such com-
puter-based tools. 

During the past three decades, the practice of mathematics 
has adopted new and interesting types of proof and argumen-
tation that challenge previous norms. This development was 
triggered primarily by the increasing use of computers in 
mathematical research, both as heuristic devices and as tools 
of verification. One major outcome has been the creation and 
acceptance among practicing mathematicians of what might 
be referred to broadly as computer-assisted theorem develop-
ment, in which mathematicians make use of both interactive 
proof assistants and fully automatic proving software (see 
Hanna, Reid & de Villiers, 2019). 

This change in mathematical practice, however, has not 
been reflected, by and large, in mathematics teaching. A few 
universities have offered courses on the use of digital proof 
assistants, but undergraduate mathematics curricula have 
neglected them. As a result, there is no solid evidence for the 
degree to which proof assistants in the undergraduate class-
room might help students construct and understand valid 
proofs. In fact, there does not appear to be any published sys-
tematic research that has explored their potential in any 
educational context. 

 
Theorem provers in mathematical practice 
Among the first uses of proof assistants was the machine-
assisted translation of informal proofs into formal ones, 
which opened the door to machine-assisted verification. 
Today the correctness of a proof, once formalized, can be 
verified to a level of certainty that mathematicians cannot 
achieve when working with the informal proofs that have 
long been their stock in trade (Avigad & Harrison, 2014; 
Voevodsky, 2014). 

While in their early stages these programs could assist only 
with verifying the correctness of existing proofs or formulat-
ing and assessing conjectures, their greatly expanded 
capabilities now allow mathematicians to take the next step 
and employ them in actually creating a new proof. These new 
capabilities were once difficult to exploit because they 
required specialized computer skills, but they have now 
become increasingly accessible to experts and novices alike. 

Automated proof assistants can be classified into two main 
types based on their capabilities and accordingly on how they 
are used in creating proofs. Interactive theorem provers 
(ITPs) facilitate the construction of proofs through close 
human-machine collaboration, while automated theorem 
provers (ATPs) [1] are designed to prove mathematical theo-
rems with a very minimum of human intervention. 

The main function of an ATP is to construct a formal proof 
that is valid within a given logical system. In other words, an 
ATP is designed to accept a set of axioms and rules of infer-
ence and then to construct a chain of inferences that shows 
how a given conjecture or other statement provided to it (and 
itself well formed in the system) is a logical consequence of 
the axioms. In pursuing this goal an ATP is also capable of 
deciding that it cannot prove the given conjecture or state-
ment because it is not compatible with the axioms, and may 
also identify a counterexample [2]. 

Formalizing proofs with an automated theorem prover 

Informal proof–sometimes incorporating formal pas-
sages–has long been the standard in mathematical practice, 
though widely recognized as open to error. As Ganesalingam 
and Gowers (2017) have written, “there is plenty of evi-
dence that incorrectness pervades the published literature” 
(p. 254). But most mathematicians were prepared to accept 
the possibility of error, because they simply did not want to 
make the formidable extra effort required to formalize their 
proofs. They found it more reasonable to settle for informal 
proofs, which also offered the advantage of being under-
standable and thoughtfully checkable. 

A formal proof demands a detailed derivation, in which 
each statement in the chain, other than the axioms, follows 
from preceding statements by explicit rules of inference. 
These rules must be made explicit at the outset, and must be 
cited whenever used at any step of the derivation. And, of 
course, all statements must be well formed, conforming to 
explicit rules. Such a derivation may have the great advan-



tage of assuring the validity of an inference, but it is cumber-
some to create, tiresome for others to follow, and, perhaps 
most importantly, often makes it much more difficult to grasp 
the mathematical ideas at play. 

However, a formal proof does have another advantage, in 
that it allows mechanical checking of its correctness. For this 
reason, too, the advent of automated theorem provers has 
been of great interest to the many mathematicians who saw 
the prospect of more thorough verification of their own 
research results. Mathematicians are often not confident their 
results are correct, but have avoided formalization because it 
is too difficult and time-consuming to do by hand. Automated 
theorem provers have come to their rescue by offering the 
prospect of automated formalization. 

Automated formalization, unlike the rare formalization by 
hand, also offers a manageable way to address the widespread 
perception that the conventional refereeing process–based on 
informal proofs–is far from adequate. In the view of Hales 
(2008), “When the part of refereeing a mathematical article 
that consists of checking its correctness takes more time than 
formalizing the contents of the paper would take, referees will 
insist on getting a formalized version before they want to look 
at a paper” (p. 1414).  Harrison (2008) too embraces the for-
malization of mathematical arguments, saying that, “the 
traditional social process is an anachronism” (p. 1400). He 
adds that once mathematicians are assured of the correctness of 
their formally verified results, they can then present them to 
others “in a high-level conceptual way […] in principle, a com-
puter program can offer views of the same proof at different 
levels of detail to suit the differing needs of readers” (p. 1400). 

Expanded capabilities 

Computer scientists have expanded the capabilities of proof 
assistants to the point that mathematicians can use them to 
construct an entire proof for a given conjecture, with varying 
degrees of human intervention. Both ATPs and ITPs can now 
be used in exploratory mode, letting mathematicians more 
easily develop new conjectures. Thus mathematicians can 
now work closely with an automated proof assistant to 
explore avenues of reasoning as well as different and perhaps 
unexpected steps to a satisfactory proof (Bundy, 2011) [3]. 

Significantly, computer scientists have also worked to 
improve the readability of ATP output and the options avail-
able: “This points to an important new direction for 
automated reasoning: multi-level proof presentation in which 
the user can choose the level of granularity of the proof and 
which highlights the key ideas and the hard parts of the 
proof” (Bundy, 2011, p. 9). In the same vein, there have also 
been attempts to design ATP output to be closer to that of a 
human being. Ganesalingam and Gowers (2017) describe a 
type of ATP that provides help to mathematicians in a partic-
ularly friendly manner. Although they did not expect its 
output to be identical to that of a human, they report that: 
“despite this, the program did reasonably well at fooling peo-
ple that it was human” (p. 287). 

Acceptance 

There is now no shortage of automated proof assistants, 
addressing the many diverse aspects of proving. The mathe-

matician Emily Riehl finds them very useful, saying, “It’s not 
necessarily something you have to use all the time […] but 
using a proof assistant has changed the way I think about writ-
ing proofs” [4]. Their reception, however, has been decidedly 
mixed. Ganesalingam and Gowers (2017) point out that, 
“these days there is a thriving subcommunity of mathemati-
cians who use interactive theorem provers such as Coq, HOL, 
Isabelle and Mizar” (p. 254), but they concede that, “it is also 
noticeable that the great majority of mathematicians do not 
use these systems and seem unconcerned about the possibility 
that their arguments are incorrect” (p. 254). 

The mathematician Michael Harris is among those who do 
not use interactive theorem provers and maintain they are not 
necessary. He estimates that it is not worth his while to invest 
time in learning the instructions needed to communicate with 
the automated prover, believing that “by the time I’ve 
reframed my question into a form that could fit into this tech-
nology, I would have solved the problem myself” [4]. 

There are no published statistics on what percentage of 
practising mathematicians make use of automated proof 
assistants and to what extent. Nevertheless, the existence of 
many international conferences, workshops, and scholarly 
journals on automated theorem proving indicate that these 
systems are widely used and are attracting attention. 

 
Theorem provers in mathematics education: 
opportunities 

As discussed, new technology is changing the way mathe-
maticians work, but its reflection in mathematics education 
has been limited to specific subjects. Mathematics educators 
have already garnered a great deal of experience using digital 
tools to teach geometry, algebra, and statistics, and have 
found them very valuable.  But this success has not carried 
over to the subject of proof. The time has come to introduce 
digital proof assistants to the mathematics classroom and to 
investigate the opportunities these state-of-the-art tools might 
provide to foster enhanced understanding of proof in particu-
lar and of mathematics as a whole. 

There is also a broader context. Because digital technolo-
gies are critical for success in our knowledge-based society, 
both schools and universities are under increasing pressure to 
produce graduates who understand technology and are able 
to integrate it into their work. To help schools and universi-
ties use technology to better understand content, the recent 
paper ‘Transforming the mathematical practices of learners 
and teachers through digital technology’ (Hoyles, 2018) 
advocates a long-term program of research and development 
in mathematics education, and in particular the creation of a 
solid base of knowledge on effective instructional practices. 

First steps 

Some twenty years ago, when proof technology was not as 
advanced and as friendly as it is today, Melis and Leron 
(1999) were among the first to advocate its use in teaching 
proof. They argued that digital technologies would encour-
age students to engage in proof planning, and that this in  
turn would support the active learning of theorem proving. 
This is because, in their judgment, the technology would 
help students explore a problem interactively and thus single 
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out the particular tasks and skills required for the proof. In 
the authors’ estimation, the technology could also help learn-
ers of proof by providing an intelligently designed 
pre-selection and ordering of methods, as well as by keeping 
a record of their proof attempts.  As far as we know, this 
early proof technology teaching advice has not been imple-
mented in mathematics education to any extent. 

In the last five years or so, readily available proof assis-
tants have become used more broadly in teaching 
mathematics and logic at the undergraduate level. Some 
recently published papers have implied that an automated 
proof assistant can help students learn to prove. The theorem 
prover Lean, for example, has been used successfully in 
undergraduate classes. 

The Lean theorem prover 

Only a few universities have introduced automated proving at 
the undergraduate level. At Carnegie Melon University, for 
example, Jeremy Avigad teaches logic and proof with the help 
of the interactive theorem prover Lean [5]. At Imperial Col-
lege Kevin Buzzard is working with a team of first-year 
undergraduates, teaching them to use it to prove theorems. 
The last edition of the Lean textbook [6], states that one of the 
goals of the Lean theorem prover is to support not only prov-
ing but mathematical reasoning in general. The authors also 
say that Lean “aims to bridge the gap between interactive and 
automated theorem proving, by situating automated tools and 
methods in a framework that supports user interaction and the 
construction of fully specified axiomatic proofs” (p. 1). 

Avigad (2019) recently described a 14-week (semester) 
course called ‘Learning logic and proof with an interactive 
theorem prover’ that he has been teaching to undergraduate 
classes. It makes use of the Lean theorem prover to provide 
an introduction to mathematical proof, symbolic logic, and 
interactive theorem proving. This course is considered appro-
priate for first- or second-year undergraduate students and 
has been taught for the last three years. Its four goals are: 

to teach [students] to write clear, literate, mathematical 
proofs; to introduce them to symbolic logic and the for-
mal modeling of deductive proof; to introduce them to 
interactive theorem proving; to teach them to understand 
how to use logic as a precise language for making claims 
about systems of objects and the relationships between 
them, and specifying certain states of affairs. (p. 279) 

Part of the instruction in this course is focussed on show-
ing students “how to write formal expressions and proofs that 
can be checked automatically” (p. 279). One third of the 
weekly homework exercises required the use of Lean, while 
the other two thirds relied on conventional methods. The 
instructor reported noticeable increases in student motivation 
and achievement, and students gave the course high evalua-
tion scores. 

In teaching this course, Avigad found that using both for-
mal and informal language led students to reflect on the 
power of symbolic language to deliver more precise informa-
tion and to shed light on ambiguities present in natural 
language. He also noted “anecdotal evidence to support the 
claim that interactive theorem proving software helps teach 

students mathematics” (p. 290). It had not been his intention 
to undertake the systematic evaluation that would be needed 
to lend more weight to this assertion. 

In his 2019 article in Motherboard Magazine [7], Rorvig 
reports that Kevin Buzzard now uses automated theorem 
provers enthusiastically in teaching undergraduates. Rorvig 
adds that “When Buzzard started using the proof verification 
software called Lean, he became hooked. Not only did the 
software allow him to verify proofs beyond any doubt, it also 
promoted thinking about math in a clear and unmistakable 
way.” Buzzard says he believes computers can help mathe-
maticians and students construct proofs, and furthermore that 
he can help make this happen sooner “by (a) helping to build 
a database of modern mathematical theorems and definitions 
and (b) trying to teach mathematics undergraduates how to 
use the software” [8]. 

It must be said, however, that the observation that the soft-
ware “also promoted thinking about math in a clear and 
unmistakable way” was not backed at the time by structured 
empirical data. In fact, there do not appear to be any research 
papers reporting on the extent to which Lean supports stu-
dents in thinking about proof, making choices, defining their 
goals, making design decisions, and evaluating their 
progress. Nor are there research papers assessing the role of 
the teacher as the provider of support for the efficient use of 
Lean, or recommending effective instructional approaches.   

Lean now has an online forum, Zulip, and a large commu-
nity of enthusiastic users [9]. It is actually under continuous 
development, as users fine-tune it and add new features. 

GeoGebra’s automated proving tools 

GeoGebra is an open-source dynamic mathematics program 
designed for the teaching and learning of mathematics from 
middle school through the undergraduate level. It has gained 
in popularity over the last twenty years and is now widely 
used. GeoGebra has recently added an Automated Reason-
ing Tool (ART) to help students conjecture that a given 
property holds for a specific geometric object and then to 
find a proof that their conjecture is true. If that is not the case 
and the property does not hold, ART can also help students 
make the necessary changes to the original conjecture 
(Hohenwarter, Kovács & Recio, 2019, p. 216). 

Since the developers of GeoGebra added reasoning tools to 
their software, they have published a large number of papers in 
scholarly journals describing the potential of those tools for sec-
ondary-school learning (see, e.g., Botana, Hohenwarter, Janičić, 
Kovács, Petrović, Recio & Weitzhofer, 2015). These additions 
appear to benefit students at both the undergraduate and the sec-
ondary level. Botana et al. (2015) say that the enhancements to 
GeoGebra were made with five goals in mind: 

1. To provide an intuitive interface 

2. To allow for simplified output 

3. To increase program execution speed 

4. To make GeoGebra’s subsystems more usable (e.g., 
test assessment) 

5. To offer a modular architecture that allows multiple 
methods of proving   
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It is perhaps too early for empirical studies of classroom 
experience using the enhancements to GeoGebra. In this 
respect the situation of GeoGebra is similar, but not identical, 
to that of proof technology in general. While it is reasonable to 
expect proof technology to foster students’ proving abilities, 
and there is certainly supporting anecdotal evidence, its poten-
tial advantages have not yet been systematically assessed. 

 
Theorem provers in mathematics education: 
challenges 
Automated proof assistants present challenges to mathematics 
educators because they were conceived as tools for research in 
computer science and mathematics, and not with teaching 
concerns in mind. Nevertheless, mathematics education could 
benefit from examining how they might be of benefit as teach-
ing tools, in particular in the teaching of proof. 

Confidence versus understanding 

We know that automated proof assistants are designed to 
provide a guarantee of correctness, and indeed they are very 
good at establishing the validity of a proof. The question, 
then, is to what degree these tools can also be helpful in 
explaining why it is that a theorem is true. Important as it is 
to practicing mathematicians, this aspect of proof is the 
prime consideration for mathematics educators, who have 
always placed such high value on proofs that not only prove 
a theorem but also provide insight and explanation. (This 
topic has been explored extensively in Hanna, 2018, and in 
almost all the literature on proof in mathematics education). 

There is a consensus, in fact, among mathematicians and 
mathematics educators alike that a proof has two potential 
roles, a guarantee and an explanation. Theorem provers do 
provide a guarantee, as we have seen, but in the shape of a 
fully formal proof that may be unintelligible. They were not 
designed to identify or highlight the main mathematical ideas 
behind a proof, and so it is no surprise that they fail in the 
explanatory role. 

This state of affairs is a challenge for educators. They are 
aware that automated proof assistants are part of today’s 
mathematical practice, and that it would be desirable that 
they be reflected in the mathematics curriculum for that rea-
son alone. They also have reason to believe, based on the 
anecdotal evidence, that this new proof technology could turn 
out to be of great benefit in the classroom. On the other hand, 
their focus will continue to be fostering students’ understand-
ing of mathematical ideas, including that of proof, using the 
tools available to them. 

In the longer term, increased use of automated proof assis-
tants and further experience with them under research 
conditions may also provide software developers with both 
the incentive and the understanding of usability that they 
require if they are to incorporate features that would make 
them more suitable to pedagogical aims.   

Reconsidering the role of logic in teaching proof with 
understanding 

To learn proof with the help of automated proof assistants, 
one must have some knowledge of symbolic logic. This 
requirement is not specific to computer-assisted proving, of 

course, but simply reflects the role of symbolic logic in 
teaching proof in general. This role has been described by 
several mathematics education researchers who examined 
teaching proof from three different perspectives, psycholog-
ical, educational, and contextual. 

Durand-Guerrier, Boero, Douek, Epp and Tanguay (2012), 
for example, reviewed a large number of studies that weighed 
the epistemological and didactic arguments for incorporating 
the principles of formal logic into the undergraduate curricu-
lum. In conclusion they said that “This brief review 
reinforced our position that it is important to view logic as 
dealing with both syntactic and semantic aspects of the orga-
nization of mathematics discourse” (p. 385). While 
recognizing that familiarity with logical principles alone is 
not sufficient to understand a proof, they saw it as necessary, 
and thus recommended the explicit teaching of the rules of 
first-order logic. They point out that a mastery of elementary 
logic can help students “avoid invalid deductions, and com-
prehend the basic structures of both mathematical proof 
(direct and indirect) and disproof by counterexample”  
(p. 374). Their conclusion is that teaching logical principles is 
essential, but that for each specific proof it must be accompa-
nied by a focus on the relevant mathematical subject matter, 
supported by appropriate examples and counterexamples. 

Experience in learning proof with the help of a theorem 
prover does provide some evidence for the value added by 
the software in forcing an awareness of the logical structure 
of a proof. The following is a comment offered by a student 
who used the theorem prover Lean: 

I believe learning Lean has brought great clarity to my 
understanding of mathematical proofs. In a way it’s like 
the perfect scratch pad, focusing your mind on the goal 
while keeping track of all your assumptions and check-
ing your thinking. Maybe I would’ve had an easier time 
learning proofs if I’d used Lean in the first place, 
although I have no way of knowing. [10] 

 
Conclusion 
How best to teach proving so students can both construct 
proofs and understand the mathematics behind them–that 
remains the central challenge. Although mathematics educa-
tors have long dedicated time and effort to this issue, 
research continues to show that students have difficulty with 
proof, at both the secondary and the post-secondary levels. 
Computer-based proof technology may well offer a new 
option in overcoming this difficulty, while at the same time 
creating an opportunity to make mathematics education 
more reflective of modern mathematical practice. 

Of course, these new tools cannot be introduced success-
fully without considerable thought and research on the part of 
educators, including a thorough analysis of classroom 
instruction with and without their use. Some questions 
quickly come to mind. Can automated proof assistants, based 
as they are on mathematical logic, help students clarify their 
thinking and improve their reasoning abilities? Can they 
enhance understanding by helping students focus on structur-
ing arguments correctly? Can they help students move from 
a formalized proof to an informal proof that does highlight 
key mathematical ideas? Most broadly, just what is the most 
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productive relationship between proving with a proof assis-
tant and advancing mathematical understanding? 

Educators will need to consider not only how existing 
tools can best be used, but also whether they require modifi-
cation (or even replacement) to make them suitable for an 
educational setting. Balacheff and Boy de la Tour (2019) 
reviewed some of the literature on existing proof assistants 
and found them to be far from satisfactory. They went on to 
offer criteria that must be taken into account in making proof 
assistants more useful for teaching and learning. 

Along with providing ATP features for mathematicians, 
computer-based tutors must take three additional cate-
gories of users into account: the curriculum decision 
makers (who specify the standard of mathematical val-
idation at a given grade), the teachers (who orchestrate 
learning and decide what counts as a proof in relation to 
a standard), and the learners (who are simultaneously 
constructing an understanding of proof and of the 
related content). (p. 356) 

Proof assistants that meet the requirements of these stake-
holders will never be developed in the absence of initiative on 
the part of mathematics educators and a demonstrated demand 
fuelled by increased use. Secondly, success also requires new 
and effective teaching strategies. These two efforts stand in a 
reciprocal relationship, so that the full benefit of proof assis-
tants will be seen only over time as new teaching strategies 
effect the demand for new tool features and vice versa. The 
responsibility for both efforts rests squarely on the shoulders 
of educators. The key is to make a start, beginning with 
exploratory studies of the potential of these new tools at both 
the secondary and post-secondary levels. 
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Notes 
[1] In this article we will use the terms ‘ATP’, ‘ITP’, ‘theorem provers’ and 
‘proof assistants’ interchangeably. 
[2] Examples of proofs using automated tools can be found in Botana et al. 
(2015) (secondary school level), Avigad (2019), and Ganesalingam & Gow-
ers (2017) (university level). 
[3] One referee pointed out that “There is a wide body of work on ‘intelli-
gent tutoring systems’ that have been applied to the teaching of proof. The 
idea is that these tutoring systems have ‘expert algorithms’ for proving the-
orems in some domain (usually geometry) as well as common models of 
students’ thinking.” We agree with this referee that “there is more out there 
than we are surveying.” The focus of the present article, however, is on 
ATPs. Readers might want to follow the referee’s advice by searching 
‘intelligent tutoring mathematics proof’ and paying “attention to this broad 
body of research in computer science and cognitive science journals that 
mathematics educators continue to ignore to their detriment.” 
[4] Cited in Ornes, S. (2020, August). How close are computers to automating 
mathematical reasoning? Quanta magazine. https://www.quantamagazine. 

org/how-close-are-computers-to-automating-mathematical-reasoning-
20200827/ 
[5] https://leanprover.github.io/about/ 
[6] Avigad, J., de Moura, L. &Kong, S. Theorem Proving in Lean Release 
3.23.0  https://leanprover.github.io/theorem_proving_in_lean/theorem_ 
proving_in_lean.pdf 
[7] Rorvig, M. (2019) Number theorist fears all published math is wrong. 
Motherboard Magazine. https://www.vice.com/en/article/8xwm54/number-
theorist-fears-all-published-math-is wrong-actually 
[8] Professor Kevin Buzzard:  https://www.imperial.ac.uk/people/k.buzzard 
[9] See https://leanprover-community.github.io/ 
[10] Andrew Helwer:  https://ahelwer.ca/post/2020-04-05-lean-assignment/ 
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