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In the discipline of mathematics, the development of new
knowledge often passes through several stages, of which
the development of proofs is typically the last. Earlier stages
frequently involve the identification and arrangement of sig-
nificant facts into meaningful patterns, the use of the
patterns to formulate conjectures and the testing of these
conjectures against new evidence, the revision of the con-
jectures to address possible counterexamples, and the effort
to understand and provide arguments about whether and
why things work the way they do (Lakatos, 1976; Polya,
1954). These activities are important because they aid math-
ematicians (as well any other doer of mathematics) in
understanding the terrain associated with the phenomenon
under examination, building a foundation for the develop-
ment of proofs (Boero et al., 1996; Mason et al., 1982). 

In school mathematics, the development of proofs has
often been treated as a formal process (primarily in high
school geometry) isolated from other mathematical activi-
ties. However, this treatment of proof is problematic,
because it does not afford students the same level of scaf-
folding that professional users of mathematics are afforded
to make sense of and establish mathematical knowledge. It
is thus important that students be assisted to develop profi-
ciency in, and understand the relations among, all major
activities that are frequently part of the process of making
sense of and establishing mathematical knowledge: ‘identi-
fying patterns’, ‘making conjectures’, ‘providing non-proof
arguments’, and ‘providing proofs’. In this paper, I use the
term reasoning-and-proving (RP) to describe the overarch-
ing activity that encompasses these four activities; the
choice of a hyphenated term reflects an emphasis on viewing
these activities in an integrated way. I capture the last two
activities under the notion of ‘providing support to mathe-
matical claims’ and the first two activities under the notion
of ‘making mathematical generalizations’. Following Polya
(1954), I associate the making of mathematical generaliza-
tions with the transportation of mathematical relations from
given sets to new sets for which the original sets are sub-
sets. Algebraic generalizations have perhaps attracted the
most attention in the literature (e.g., Kieran, 1989; Radford,
2006), but the notion of generalization in this paper tran-
scends content areas (e.g., algebra, geometry) and
representational forms (e.g., algebraically, pictorially).

Although RP is central to doing mathematics, many stu-
dents and teachers of mathematics face serious difficulties
with the different activities that comprise RP, especially the
development of proofs (e.g., Balacheff, 1988; Healy &
Hoyles, 2000; Knuth, 2002; Stylianides et al., 2007). In

order for the field to build the knowledge base that will sup-
port the efforts to effectively promote mathematical ideas
such as RP among students, it is important to develop ana-
lytic tools that can support different kinds of investigations
focusing on these ideas, such as textbook analyses and
examinations of teaching and learning (Stein et al., 2007).
These analytic tools can also provide the means to connect
research findings from different investigations, thereby sup-
porting the development of integrated research programs and
the accumulation of knowledge across different domains.
This paper contributes to this research and development
endeavor in the particular domain of RP by:

• proposing an analytic framework that can serve as
a useful platform for conducting different kinds of
investigations with a focus on RP; and

• illustrating the utility of the analytic framework in
the context of two research studies: a textbook
analysis and an examination of a teacher profes-
sional development session. 

Analytic framework 
The conceptualization of RP that I have outlined sets the stage
for an analytic framework that includes three components:
mathematical, psychological, and pedagogical (Fig. 1).
Before I elaborate on the three components of the framework
and discuss what kind of inquiry on RP they can support, I
make four comments about the framework. First, I do not
claim that the framework captures every possible activity
related to RP. For example, an activity that is not adequately
captured in the framework is ‘reasoning by analogy’, which
is central to the work of professional mathematicians (Polya,
1968) and to students’ engagement in problem solving (Eng-
lish, 1997; Reid, 2002). Second, I do not suggest that the
development of proofs in the discipline or in school mathe-
matics passes, or should always pass, through the identi-
fication of patterns and the making of conjectures. Students
may try to prove, for example, a statement that is given to
them by the teacher or that appears in the textbook. Also,
professional mathematicians often try to prove already
established conjectures or generate alternative proofs to
already established theorems. Third, I do not suggest that
conjectures always develop inductively through pattern
identification. Conjectures can also be generated, for exam-
ple, by analogy or deductively from already established
theorems (Koedinger, 1998). Fourth, my focus on a mathe-
matical, psychological, and pedagogical perspective (each
deriving from the corresponding framework component)
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does not suggest that these perspectives are unrelated to, or
are more important than, other perspectives that have been
used in the study of RP, such as cultural-historical, social-
interactionist, and semiotic (for a semiotic analysis of
students’ strategies in algebraic generalization of patterns, see
Radford, 2006). 

Mathematical component

The mathematical component of the framework includes the
four activities that comprise RP together with a further
breakdown of some of these activities to capture important
distinctions. Its primary feature is that it integrates many
well-known activities related to engagement with proof,
thereby allowing one to examine this engagement in an inte-
grated way. As suggested by its name, this component of
the framework can support inquiry on RP activity from a
mathematical perspective. In this perspective, the observer
(or examiner) of the activity (e.g., classroom activity or
activity described in textbooks) is considered to be a math-
ematically proficient person (e.g., the researcher or the
teacher) who analyzes the given activity using mathematical
considerations. For example, the observer may identify a
student argument as an empirical argument irrespectively
of the student’s perception of the argument (the student may
believe that his argument qualifies as a proof).

Identifying a pattern. A major challenge in mathematics
education is to develop students’ abilities to make general-
izations on the basis of mathematical structures (structural
generalizations) rather than on the basis of perception or
the evidence offered by the regularities found in a few exam-
ples (empirical generalizations) (Bills & Rowland, 1999;
Küchemann & Hoyles, in press). Students’ ability for struc-
tural generalizations is particularly important when they
engage with patterns, which denote general mathematical
relations that fit given sets of data. A considerable body of
research (Becker & Rivera, 2006; Bills & Rowland, 1999;
Küchemann & Hoyles, in press; Zazkis & Liljedahl, 2002)
indicates that students tend to make empirical rather than
structural generalizations when they engage with tasks like
‘The Hexagon Trains Task’ (Fig. 2). 

The hexagon task gives rise to what I call a definite pat-
tern, because it is possible mathematically for a solver to
provide conclusive evidence for the selection of the pattern,
Perimeter of Train n = (4n + 2). Of course, there are many
equivalent ways (both algebraic and non-algebraic) to repre-
sent the pattern. The specific pattern is determined by the
mathematical structure of the task, which specifies the
process by which each train in the pattern is created: ‘The
first train in this pattern consists of one regular hexagon. For
each subsequent train, one additional hexagon is added’.

Figure 1: The analytic framework

Figure 2: The Hexagon Trains Task
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Without this structure it would be impossible mathematically
for the solver to decide, for example, whether Train 5 would
consist of 5 hexagons. [1] If this structure were missing, the
task would give rise to what I call a plausible pattern.

In plausible patterns, it is not possible mathematically for
a solver (given the information in a task) to provide conclu-
sive evidence for the selection of a specific pattern over
other patterns that also fit the data. However, the solver may
select a specific pattern based on other criteria. For example,
she may select the simplest or most evident (‘natural’ in
Zazkis & Liljedahl’s, 2002, terms) pattern that fits the data.
Example 1 illustrates the notion of plausible patterns by pre-
senting a pattern that is not uniquely determined. 

One pattern that fits the data in the table is b = 2a. Based
on this pattern, the missing entries are 8 and 16. Another pat-
tern that fits the data is b = 1/2 · a · (a + 1) + 1. According to
this pattern, the missing entries are 7 and 11. From a mathe-
matical standpoint, however, any answer to the task could be
correct. One could say, for example, that the missing entries
are 1 and 2, considering the first three values of b in the table
as the ‘unit of repeat’ of the pattern. More boldly, one could
say that both missing entries are 0, considering that all the
values in the pattern after the first three are 0.

While an observer can determine the nature of a pattern
(definite versus plausible) using strictly mathematical criteria,
solvers can take different paths (correct or incorrect, from
the observer’s standpoint) when they engage with patterns.
Specifically, although in a definite pattern a structural gen-
eralization is required for the unique identification of the
pattern, one might (incorrectly) offer an empirical general-
ization for it. In a plausible pattern, however, one is not
required to provide a structural generalization to be correct
(cf. the ‘zero’ solution in Example 1). Yet, it is possible for
a solver to provide a structural generalization in identifying
a plausible pattern. Consider again the hexagon task but
without the two sentences that specify how each train in the
pattern is created. A solver could assume a particular struc-
ture (e.g., a linear pattern) and provide, based on this
assumption, a structural generalization for the pattern. 

Making a conjecture. In this framework, a conjecture is
defined as a reasoned hypothesis about a general mathemat-
ical relation based on incomplete evidence. The term
‘reasoned’ is intended to emphasize the non-arbitrary char-
acter of the hypothesis. The term ‘hypothesis’ indicates a
level of uncertainty about the truth of a conjecture and
denotes that further action is needed for its acceptance or
rejection (Cañadas & Castro, 2005; Reid, 2002). As Harel
and Sowder (1998) put it, “[a] conjecture is an observation
made by a person who has doubts about its truth” (p. 241).

Although the activities of making conjectures and identi-
fying patterns are clearly related (as parts of the more

general activity of making mathematical generalizations),
there are two important differences between them. First, in
conjecturing, a hypothesis is formulated that has a domain of
reference which extends beyond the domain of cases that
gave rise to it, whereas in pattern identification, the state-
ment of a pattern does not necessarily extend beyond the
domain that gave rise to it (Reid, 2002). Second, in conjec-
turing, a hypothesis is set forth that, although accompanied
by an expression of conviction about its truth, is not consid-
ered to be true or false and is subject to testing, whereas in
pattern identification, a relation that fits a given set of data is
presented in a way that does not communicate necessarily
possible doubt about its truth. 

Providing a proof. Following Stylianides (2007), a proof is
defined here as a valid argument based on accepted truths for
or against a mathematical claim. The term ‘argument’ denotes
a connected sequence of assertions. The term ‘valid’ indicates
that these assertions are connected by means of accepted
canons of correct inference such as modus ponens and modus
tollens. The term ‘accepted truths’ is used broadly to include
the axioms, theorems, definitions, modes of reasoning, and
representational tools that a particular community may take
as shared at a given time. An argument that qualifies as a proof
makes explicit reference to ‘key’ accepted truths that it uses. 

The term ‘valid’ in the definition of proof should be
understood in the context of what is typically agreed upon in
the field of mathematics nowadays. Of course, this is not to
say that this term has universal meaning in mathematics
nowadays, but it is beyond the scope of this paper to elabo-
rate on this issue. Also, deciding what belongs to the set of
accepted truths of a particular community at a given time or
which accepted truths should be explicitly referenced in a
proof are delicate issues. Addressing in detail these issues
is again beyond the scope of this paper. It is clear, however,
that a possible response to these issues would have to con-
sider the audience for the proof. For example, modus ponens
is a major accepted truth that is, however, never referenced
in mainstream mathematical proofs because it is considered
to be basic knowledge. In this sense, we may say that modus
ponens is not considered a key accepted truth worthy of ref-
erence in the context of mainstream mathematical proofs.
Another issue concerns the knowledge that can be consid-
ered as shared within a community, such as a classroom
community. This knowledge does not necessarily reflect the
understanding of each individual student. As Lampert
(1992) noted, the individual learners of a classroom com-
munity ‘go their separate ways with whatever knowledge
they have acquired’ (p. 310). Accordingly, when I talk about
the set of truths that are accepted by a community, I do not
imply that each member of the community understands in
the same way the elements of this set. Rather, I mean to refer
to the elements of this set that can comfortably be assumed
and used publicly without justification.

The framework distinguishes between two different kinds
of proof: generic examples and demonstrations. A generic
example is a proof that uses a particular case seen as represen-
tative of the general case (Balacheff, 1988; Mason & Pimm,
1984; Rowland, 1998; also similar to Harel & Sowder’s, 1998,
‘transformational proof’), whereas a demonstration is a proof
that does not rely on the ‘representativeness’ of a particular

Example 1
The table shows how two variables relate. Find a pattern in
the table and use the pattern to complete the missing entries.
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case (similar to Harel & Sowder’s, 1998, ‘axiomatic proof’
and Balacheff’s, 1988, ‘thought experiment’). Valid argu-
ments by counterexample, contradiction, mathematical
induction, contraposition, and exhaustion are examples of
demonstrations. I do not associate demonstrations with any
particular representational form such as the use of algebraic
notation. For example, the following argument by a third-
grader for the claim ‘odd + odd = even’ would qualify as a
demonstration (assuming that the argument addressed
appropriately contextual features of the classroom commu-
nity where it was developed): 

All odd numbers if you circle them by twos there’s one
left over. So, if you add two odd numbers, the two ones
left over from the two odd numbers will group together
and will make an even number. This is because all even
numbers if you circle them by twos there’s none left
over. (adapted from Ball & Bass, 2003, p. 39)

Providing a non-proof argument. In this framework, a
non-proof argument is defined as an argument for or against
a mathematical claim that does not qualify as a proof. The
framework distinguishes between two kinds of non-proof
arguments: empirical arguments and rationales. 

An empirical argument is an argument that provides
inconclusive evidence for the truth of a mathematical claim
(similar to Harel & Sowder’s, 1998, ‘empirical justification’
and Balacheff’s, 1988, ‘naïve empiricism’). In particular, the
solver may conclude that a claim is true after checking a
proper subset of all the possible cases covered by the claim,
or after considering the full range of possible cases without
however showing that she did so. 

Contrary to the well-known notion of empirical argument,
the notion of rationale is new and has been introduced in the
framework to capture arguments for or against mathematical
claims that are neither proofs nor empirical. For example, an
argument counts as a rationale (vs. a proof) if it does not make
explicit reference to some key accepted truths that it uses (in
the context of a particular community where these truths can
be considered as key), or if it uses statements that do not
belong to the set of accepted truths of a particular commu-
nity. Consider the third-grader’s demonstration presented
earlier without the first and last sentences: ‘If you add two odd
numbers, the two ones left over from the two odd numbers
(after circling them by twos) will group together and will
make an even number’. This argument does not make explicit
reference to the definitions of even and odd numbers being
used; these definitions can be considered as key for the devel-
opment of the argument in the context of a third-grade
classroom community where these definitions are just emerg-
ing. There are also other accepted truths in this argument that
are not referenced explicitly, such as the transitivity of equal-
ity. However, requiring explicit reference to such intuitively
obvious properties for arguments to qualify as proofs could
shift the emphasis from proof as a vehicle to sense-making to
proof as a ritual procedure (Schoenfeld, 1991). For another
example of a rationale, consider a situation where a student
is trying to prove that ‘odd + odd = even’ using the statement
‘even + even = even’, but this statement does not belong yet to
the set of accepted truths of the particular classroom commu-
nity. The following student argument would then count as a

rationale: ‘Since even + even = even, I can get the sum of
any two odd numbers by adding 1 to each of two even num-
bers. Therefore, odd + odd = (even + 1) + (even + 1) = (even
+ even) + 2 = even + 2 = even, since 2 is an even number’.

Psychological component

The psychological component of the framework focuses on
the learner. An inquiry on RP from a psychological perspec-
tive would examine the solver’s perception of the
mathematical nature of a mathematical object related to RP
(pattern, conjecture, proof, non-proof argument) as this per-
ception is reflected, e.g., in the solver’s solution of a task or
in the solver’s comments about another solver’s solution of
a task. Thus, contrary to what happens in the mathematical
component of the framework, the psychological component
requires that terms such as ‘proof’ and ‘conjecture’ be inter-
preted in a subjective sense (Harel & Sowder, 1998, 2007).

To illustrate the psychological component of the frame-
work, consider a solver producing an argument in response
to a task that asks him to prove a claim. The important ques-
tion from a psychological perspective would then be
whether the solver considers the argument he produced to be
a proof. The solver may believe that his argument is a proof,
even though it may be an empirical argument according to
the judgment of an observer (e.g., a researcher or a teacher)
who evaluates the argument using a mathematical perspec-
tive. The distinction between the solver’s perception of the
argument and the nature of the argument (as derived by appli-
cation of a mathematical perspective) bears some similarities
to Balacheff’s (1988) distinction between the notions of
‘explanation’ and ‘(mathematical) proof’: the validity of the
former relates (initially, at least) to the person who articulates
it, whereas the validity of the latter depends on rules of dis-
course shared by the wider community of mathematicians.

For another example, refer back to the hexagon task and
assume that a solver approaches the task empirically by gen-
eralizing the pattern from the numerical values in a table, but
believes that her solution uniquely determines the pattern.
Although this approach to deriving the pattern is limited
from a mathematical standpoint, an observer who uses a
psychological perspective to examine the solver’s work can
conclude that the solver appears to perceive the pattern as
definite. Of course, such a conclusion would not imply or
presuppose that the solver was aware of the distinctions
between, or the language of, plausible and definite patterns.

Pedagogical component

The pedagogical component of the framework uses both the
mathematical and the psychological components. An inquiry
into RP from a pedagogical perspective would focus on two
primary and interrelated issues. The first issue concerns how
the mathematical nature of a mathematical object related to
RP (as derived by application of a mathematical perspective)
compares with the solver’s perception of this nature (as
derived by application of a psychological perspective). Pos-
sible discrepancies emerging from this comparison can help
identify potential foci for teachers’ pedagogical actions aim-
ing to support the refinement of their students’understandings
of the nature of a particular RP object (see Stylianides, 2007,



for a teaching approach that is consistent with this pedagogi-
cal perspective in the particular area of proof). 

The second issue is an extension of the first: once instruc-
tion compares and identifies possible discrepancies between
students’ perceptions of particular mathematical objects (the
activity of RP being a case in point) and conventional under-
standings of these objects in the mathematical community,
instruction needs to actively seek ways to help students
gradually refine their perceptions toward the conventional
understandings (e.g., Ball, 1993; Harel & Sowder, 2007;
Stylianides, 2007). In cases where this goal is achieved with
respect to a particular mathematical object, we may say that
the mathematical nature of the object has become ‘transpar-
ent’ (versus ‘non-transparent’) to the solver. Specifically, the
mathematical nature of a RP object is said to be transparent
to the solver if the solver’s perception of the object coincides
(after an instructional intervention, etc.) for valid reasons
with the mathematical nature of the object. If, however, the
solver’s perception of the object does not coincide with the
mathematical nature of the object, or if it coincides with it
for invalid reasons, then we may say that the mathematical
nature of the object is non-transparent to the solver. 

For example, an empirical argument is said to be trans-
parent to a solver if the solver recognizes what makes the
argument empirical such as the fact that the argument pro-
vides inconclusive evidence for a claim, having established
its truth only on a proper subset of all the possible cases. If,
however, the solver believes that the empirical argument is a
proof, then the mathematical nature of the argument is said
to be non-transparent to the solver. For another example, a
definite pattern is said to be transparent to a solver if the
solver recognizes by application of a valid method why the
pattern is uniquely determined. If, however, the solver is
convinced that the pattern is definite by an empirical argu-
ment, then the mathematical nature of the pattern is said to
be non-transparent to the solver.

Two studies where the analytic framework
was used 
In this section, I explain how the analytic framework was
used in two studies with a focus on RP: a textbook analysis
[2] and an examination of an episode from a teacher profes-
sional development session (Stylianides & Silver, in press).
My goal here is not to present in detail the two studies, but
rather to illustrate the utility of the framework in each of
them. The first study adopts a mathematical perspective,
whereas the second study adopts a combined mathemati-
cal/psychological/pedagogical perspective. 

Study 1: A textbook analysis 

In many classrooms, mathematics textbooks are an impor-
tant resource for providing tasks for students and teachers’
work (e.g., Tarr, 2006). To date, however, we lack detailed
knowledge of how RP is treated in contemporary textbooks.
Also, little research has focused on developing and apply-
ing analytic tools to investigate this issue and address
questions like the following: To what extent are tasks that
design opportunities for students to engage in RP repre-
sented in mathematics textbooks? How are these tasks

distributed across the different constituent activities of RP
and their subcategories? Is this distribution different across
grade levels and content areas?

Because of the nature of a textbook analysis, it was mean-
ingful to adopt a mathematical perspective in this study.
Who would be the solver whose subjective experience
would be examined had I also adopted a psychological or a
pedagogical perspective? I used the mathematical compo-
nent of the framework to investigate the opportunities for RP
that were designed for students in the algebra, number the-
ory, and geometry units of the Connected Mathematics
Project (CMP; e.g., Lappan et al., 1998/2004). CMP is a
popular middle school (ages 11–13 years) mathematics text-
book series in the United States that aims to embody the
curriculum reform proposals of the National Council of
Teachers of Mathematics (NCTM, 1989, 2000). My analysis
of CMP involved: (1) identification of the textbook tasks
that designed opportunities for students to engage in at least
one of the activities that comprise RP, and (2) coding these
tasks using as codes the different RP (sub)categories in the
framework. Multiple coding of a task was possible.

An important issue faced in the analysis was how to make
decisions about what opportunities each task was designing
for students, especially because the actual formulation of the
tasks – that is, how the tasks played out in classroom prac-
tice – is not available when one analyzes textbooks. To
address this issue, I developed a way to make reasonable
inferences about the expected formulation of the tasks – that
is, the path students were anticipated to follow in solving the
tasks as this was reflected in what the textbook authors
wrote in the students’ textbook and the teacher’s edition of
their textbook series. I determined the expected formulation
of tasks by solving them in the order they appeared in the
textbook series and by considering together the following
three factors: (1) the approach suggested by the students’
textbook, (2) the approach suggested in the teacher’s edition,
and (3) the students’ expected knowledge and understanding
when encountering a certain task. I determined the latter by
looking at what preceded the given task in the student’s text-
book and considering it to be known to the students. Below
is an example of how I coded a CMP task. 

This task was triple-coded as identifying a pattern (defi-
nite pattern), making a conjecture, and providing a proof
(demonstration). This is because in the expected formulation
of the task the students were anticipated to: (1) examine a
few cases and notice the definite pattern that the sum they
got in all cases was an even number; (2) use the pattern to
formulate the conjecture that the sum of any two evens is
even; and (3) use their representation of even numbers as
rectangles with a height of two square tiles to provide the
following demonstration: ‘The sum of two even numbers is
even because we can combine two rectangles with height of
two square tiles (i.e., two even numbers) to get another rec-
tangle with height of two square tiles’.

I tested the inter-rater agreement of the coding scheme
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Example 2 (adapted from Lappan et al., 1998/2004, p. 29)
Make a conjecture about whether the sum of two even
numbers will be even or odd. Then justify your answer. 



by comparing my codes with the codes of a second rater in
a sub-sample of tasks that offered the opportunity for dif-
ferent kinds of codes. One reliability value was based on our
decisions on whether each task in the sub-sample was
designed to engage students in RP (92.7%; kappa statistic =
.9). A second reliability value was based on our decisions
on how to sort the RP tasks to the seven RP subcategories
(88.5%; no kappa statistic because tasks could be classified
in multiple subcategories).

About 40% of the 4578 tasks in the sample were designed
to engage students in RP. Of the RP tasks in the sample, 

• 62% were designed to offer students opportunities
to give rationales,

• 18% to identify definite patterns,

• 6% to identify plausible patterns,

• 3% to make conjectures,

• 2% to provide empirical arguments, and

• 12% to provide demonstrations. 

Generic examples were virtually non-existent in the sample
(0%). The latter result suggests a possible limitation in CMP
students’ opportunities to engage in proofs, because generic
examples can provide middle school students with a power-
ful and easily reached means of conviction and explanation
(Bills & Rowland, 1999; Rowland, 1998), especially when
they lack the mathematical language and notation to develop
arguments detached from any particular case (Balacheff,
1988). Another notable finding is that the RP tasks were dis-
tributed unevenly across grade levels and content areas, with
the sixth-grade number theory unit concentrating the highest
proportion of proofs.

To conclude, the major strength of the analytic framework
in this study is its unifying power: it offered a reliable tool to
examine in detail the opportunities designed in the algebra,
geometry and number theory CMP units for students to
engage in all constituent activities of RP. The findings from
the analysis addressed the questions that the study aimed to
address and raised some other important questions related to
how RP can best be promoted in mathematics textbooks
more generally. For example, the findings related to the
sixth-grade number theory unit raised the issue of whether
it matters how the RP opportunities are allocated in a text-
books series (e.g., across grade levels and content areas), or
whether what really matters is to have these opportunities
in the textbook series. 

Study 2: An examination of an episode from a teacher
professional development session 

In this study, we utilized a combined mathematical/psycholog-
ical/pedagogical perspective and used the identifying a pattern
category of the framework to analyze an episode with a group
of 12 middle school teachers who were identified by their
schools as leaders and were experienced users of CMP. The
teachers were engaged in the hexagon task (cf. Fig. 2). One of
the goals of the teacher educator for the session was to engage
the teachers in pattern identification and to initiate a discussion
on issues related to teaching patterns to their students. 

Using the language of the analytic framework and adopt-
ing a mathematical perspective, we can say that the hexagon
task provided an opportunity for teachers to look for the
underlying mathematical structure of a definite pattern and
to use that structure to derive a rule that could be used to
compute (conclusively) the perimeter of any train. 

Our analysis of the episode using a psychological per-
spective showed that many teachers approached the problem
the same way the literature suggests that many students
would approach it: they calculated the perimeter of the first
few trains and identified the pattern in ways predicated on
the basis of the regularities found in these terms (empirical
generalization), without connecting the generalization with
the process by which each subsequent train was constructed
from the previous one (structural generalization). In essence,
this  approach ignored the information in the task that made
the pattern definite, thus treating the pattern as if it were
plausible. Two teachers, for example, used the numbers 6,
10, and 14 to find the pattern 4n + 2. Here is a description
of the empirical approach that these teachers followed to
solve the task based on data gathered by measuring the sides
of the first three trains: 

The constant difference of 4 between one train and the
next suggested to us that there must be a factor of 4n
somewhere in the formula. Once we figured this out,
we started looking for the appropriate correction fac-
tor by trial and error.

Despite the fact that many of the teachers approached the
pattern empirically, most of them seemed to have no doubt
about its definite nature. The apparent discrepancy between
their approach to the pattern and the mathematical nature of
the pattern suggests, according to the pedagogical compo-
nent of the framework, that the definite nature of the pattern
was non-transparent to them. Yet some of the teachers who
identified the pattern based solely on numerical values
expressed doubts about whether the algebraic expression they
found was an accurate representation of the pattern. Also, one
teacher, Nicole, noted the following struggle she faces in her
teaching: ‘I teach this unit and my students would struggle
with this, and I also struggle with how to help them’. 

After some prompting from the teacher educator, another
teacher, Tanya, came up with a structural generalization: she
presented a solution that was connecting the pattern to the
figures and was referring to the process by which each train
in the pattern was created. Tanya’s solution, which suggested
that the definite nature of pattern was transparent to her,
helped make the pattern transparent to some of her colleagues
as well. For example, Nicole remarked that Tanya’s solution
was an eye-opener to her. She also noted that, in her teaching,
she would only explain the pattern from the numerical values
in a table (empirical generalization), implying that now she
would seek something better than that (structural general-
ization). This remark suggests that she, and possibly other
teachers in the episode, would normally enact in their class-
rooms a pattern task such as the hexagon task the same way
they initially approached the hexagon task themselves during
the session. Specifically, they would guide their students to
derive the pattern based on numerical values from a table in
isolation from the mathematical structure in the task.
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In this study the analytic framework helped us in two impor-
tant ways. First, it offered us useful language to describe the
mathematical terrain relevant to the hexagon task. Second, it
helped us compare teachers’ initial understanding of the pattern
in the task with the mathematical nature of the pattern and
examine how this understanding developed during the session.
Although the teachers in the session were dealing with a defi-
nite pattern, they initially tended to treat the pattern numer-
ically and generalize it without connecting it to the mathemat-
ical structure of the task that uniquely determined the pattern.
Later in the session, however, the discussion helped make the
pattern transparent to some of the teachers. Making the pat-
tern transparent to the teachers helped some of them gain
insights into their teaching.

Other potential contributions of the analytic
framework to research 
The analytic framework has the potential to support studies
in the domain of RP that would focus on each of the three
major components of instruction – students, teachers, and
textbooks (Cohen & Ball, 2001) – thereby facilitating exam-
ination of the relationships among these components. For
example, the interplay between what is included in the text-
books (written curriculum) and how the textbooks are
enacted by teachers and their students in classrooms (imple-
mented curriculum) is still not well understood in the
particular domain of RP but also more broadly (Remillard,
2005). Understanding these relationships is important
because it can help connect research findings from different
investigations that focused on the different components of
instruction.

The analytic framework can be used to study the relation-
ships between written and implemented curriculum in the
domain of RP: To what extent do teachers implement in their
classrooms textbook tasks related to RP in the ways intended
by the textbook authors? A textbook analysis like the one I
described earlier would offer a good picture of the place of
RP in the written curriculum. To study the place of RP in
the implemented curriculum, one can use the mathematical
component of the framework to code the tasks based on their
actual formulation (as opposed to their expected formulation
that I used in the textbook analysis) in the classroom. One
can expect that application of the analytic framework in a
study of the implemented curriculum will be less challeng-
ing than its application in a study of the written curriculum:
it is easier to code tasks based on observation of how they
played out in classroom practice, rather than based on infer-
ences about the path students are expected to follow to solve
them. However, in a study of the implemented curriculum
some of the framework categories would need to be further
refined to capture important complexities that are hard to
capture in analysis of textbooks. One possible refinement
concerns the providing a proof category. Textbooks do not
typically offer information about how students are likely to
represent their arguments, so a textbook analysis cannot eas-
ily examine the representational tools used in arguments and
proofs. However, the availability of actual student work per-
mits this kind of examination in an analysis of classroom
practice (see Stylianides, 2007). 

With regard to issues of attained curriculum, each of the

activities that comprise RP in the analytic framework cor-
responds to an activity for which researchers can design
tasks to construct a comprehensive portrait of students’
understanding of RP. For example, researchers can design
tasks to examine students’ ability to produce proofs and also
their ability to evaluate whether their arguments qualify as
proofs. Specifically, the analytic framework can offer a use-
ful tool to analyze the student arguments both from a
mathematical perspective (e.g., to characterize a particular
student argument as an empirical argument) and from a psy-
chological perspective (e.g., to characterize the student’s
perception of whether his empirical argument qualifies as
a proof). Comparison of the findings to be obtained from
application of the two perspectives can provide insights into
students’ understanding of proof and inform pedagogical
interventions that will aim to promote students’ understand-
ing in this domain. In a study of university students’
understanding of proof, I gave 39 preservice elementary
teachers two test items that asked them to prove two math-
ematical claims and then evaluate whether their arguments
qualified as proofs. Preliminary analysis of the preservice
teachers’ written responses to the two items showed that
about a quarter of these responses qualified as proofs. Also,
in all of these responses the preservice teachers clearly rec-
ognized the arguments they produced as proofs. From the
rest of the responses, which ranged from non-proof argu-
ments to non-arguments, about a third were clearly
recognized by the preservice teachers as non-proofs. These
findings provide a new lens to viewing students’ under-
standing of proof: an unsuccessful attempt to prove a claim
does not necessarily imply limited understanding of the
notion of proof.

Finally, in cases where studies on the connections
between the written and implemented curriculum reveal
high fidelity of curriculum implementation, researchers can
map the findings of textbook analyses onto the findings of
studies on students’ understanding of RP. This mapping can
inform textbook revisions in order to better support instruc-
tion that would help students develop their understanding
in this domain.
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Notes
[1] When I characterize a pattern as definite, I do so with the caution “that
it is sometimes extraordinarily difficult to achieve understanding, certainty,
or clarity in mathematics” (Hersh, 1979, p. 40). In the case of the hexagon
task, one could argue that there is ambiguity in how additional hexagons are
added to form subsequent trains (e.g., one could claim that the new hexagon
does not necessarily need to be added serially with only one of its sides
overlapping with one side of a previous hexagon in the train).
[2] Stylianides, G.J. (2005) Investigating students’opportunities to develop
proficiency in reasoning and proving: a curricular perspective, Unpub-
lished doctoral dissertation, University of Michigan, Ann Arbor. 
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