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The technological advances of recent years have greatly 
expanded the possibilities of qualitative mathematics educa-
tion research. With lightweight cameras and virtually 
unlimited disk space, researchers now have the tools to col-
lect large amounts of qualitative data. But, frustratingly, 
in-depth qualitative analysis is so complex that these poten-
tials cannot be utilized. For example, in a four-year study, I 
collected 1510 minutes of video data, but due to the need for 
focus was only able to analyze 450 minutes in detail 
(Büscher, 2018). It seems that the methods of data analysis 
have not kept pace with the methods of data collection. 

This is indicative of a larger divide in mathematics educa-
tion research. Although most distinctions of research relate 
to the difference between quantitative and qualitative 
methodologies, this can also be seen as a question of scale. 
Quantitative methodologies are used in large-scale research, 
favoring statistical generalizability over in-depth descrip-
tion. Qualitative methodologies are employed in small-scale 
research, favoring the opposite. Mixed-methods approaches 
combine both methodologies in an attempt to draw from 
both strengths, but do so through sub-studies that are them-
selves either quantitative or qualitative. 

Qualitative methodologies are so labor-intensive that they 
only permit small-scale research. Yet, with the right tools, it 
might well be possible for  qualitative methodologies to be 
scaled up. Today, machine learning and artificial intelligence 
(AI) might provide just such tools for solving this problem 
of qualitative research. Recently, researchers have begun 
investigating the potentials of new AI technology for 

research practice. For example, Gurevych and colleagues 
(2018) show how the research workflow in social science 
could be substantially changed and supported by machine 
learning technology. In mathematics education research, 
Kersting and colleagues (2014) investigate the potentials of 
automated scoring of teacher answers. With the field of AI 
research rapidly expanding, more insights into the possibili-
ties of using AI methods for scaling up qualitative 
mathematics education research are needed. 

This article examines these possibilities in two parts: (1) a 
report on a small study using a basic AI method, the simple 
neural network, for automated analysis of transcript data. 
The purpose of this part is to provide first impressions on 
what is possible using AI methods, how such studies need to 
be constructed, and on challenges and limitations associated 
with such studies. Afterwards, (2) the results of the study 
serve as the foundation for the main point of this article, a 
reflection on the methodological potential of AI. 

 
Problems of AI and mathematics education 
research 
The term ‘artificial intelligence’ often evokes images of sen-
tient robots and intelligent supercomputers. However, this is 
not an adequate description of the field of AI. Instead, AI is 
better understood as a collection of various methods that 
allow computers to perform tasks that are traditionally 
thought to belong to humans: “Artificial Intelligence is the 
study of how to make computers do things at which, at the 
moment, people are better” (Rich, Knight & Nair, 2009, p. 3). 

SCALING UP QUALITATIVE MATHEMATICS 
EDUCATION RESEARCH THROUGH  
ARTIFICIAL INTELLIGENCE METHODS 

CHRISTIAN BÜSCHER

Table 1. Tasks of AI an mathematics education research.

Task AI example ME research example

Text classification Given a text, is it an example of a news report, a story, or 
any other form of text?

Given a teacher utterance, is it a question, an explana-
tion, or an instruction?

Text analysis Given a text, what are the contents spoken about? Given a conversation between teachers, what are the 
contents talked about?

Sentiment analysis Given a text (a tweet, a post, …), is it (implicitly) incit-
ing aggression or calling for hurting people?

Given a student answer, what are the concepts and 
conceptions implicit in the words?

Sequence-to-sequence 
mapping

Given a sentence, what is a sentence expressing the same 
meaning in another language?

Given a student explanation, what are the warrant, 
backing, and claim of the argument?

Computer vision Given an image, what are the objects depicted? Given a classroom video, what are the gestures 
employed by the teacher?
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There are numerous ‘things’ which computers are increas-
ingly able to ‘do’. Some of the most common are shown in 
Table 1. These AI tasks are similar to many tasks performed 
in qualitative mathematics education research. For example, 
deductive transcript analysis consists of finding instances of 
categories within text data, resonating with text analysis. 
Mathematics education research tasks with a higher degree 
of interpretation, such as the identification of student reason-
ing behind actual utterances can be considered tasks of 
sentiment analysis.  

Thus, many tasks handled manually by researchers in 
mathematics education could possibly be supported by auto-
mated tools using AI methods. Some researchers already 
point out possible directions automated analysis could take. 
For example, Kersting and colleagues (2014) use the 
machine learning model of naïve Bayes classifiers to score 
teachers’ short written answers on assessments. They show 
how automated scoring can possibly complement human 
scoring. Yet much of the potential of machine learning still 
needs further inquiry. AI methods do not necessarily provide 
new ways of doing research. Moreover, the tasks depicted in 
Table 1 all relate to the special case of deductive analysis. 
However, if it were possible to use AI methods for deductive 
analysis, this would greatly improve the scale in which some 
qualitative research could be carried out. 

 
Mathematical content in teachers’ talk 
One problem for AI are the large amount of data needed as 
soon as the data become complex and ambiguous—which 
qualitative data notoriously are. This presents a problem if 
only a small amount of data are available (for example, any-
thing under 10 000 samples). The data analyzed here come 
from a teacher development project for inclusive mathemat-
ics education. The mathematics employed by teachers and 
the ways it is employed are important research priorities 
(Hill et al., 2008). Thus, qualitative research on teacher pro-
fessional development needs tools for uncovering the 
mathematical content in teachers’ talk. If it were possible to 
automate the task of identifying mathematical content, it 
would become possible to scale analysis up from single  
professional development courses to larger development 
programs. 

The task of automated identification of mathematical con-
tent in teachers’ talk can therefore be considered relevant for 
research for at least two reasons: (1) it provides a rough but 
quick quantification of mathematical content, allowing a 
quick comparison between different courses; and (2) it saves 
time. This second reason is not only obvious, but rather cru-
cial. Identifying mathematical content itself is not a very 
demanding task, but it does take a substantial amount of 
time. An automated analysis could allow researchers to 
quickly filter out the possibly interesting utterances (i.e. 
those with mathematical content), which could then provide 
the basis for a more sophisticated qualitative analysis (e.g., 
how and when is the mathematical content articulated?). 
Thus, automated analysis could provide researchers with a 
tool to focus on more complex qualitative research ques-
tions. Should the simple automated identification of 
mathematical content succeed, more sophisticated AI meth-
ods could even provide a more in-depth automated analysis. 

A short introduction to simple neural networks 
Out of the vast field of AI, machine learning is one (still 
vast) subfield (see Russell & Norvig, 2010 for an in-depth 
treatment of the field). It deals with problems for which the 
underlying rules and relationships are either unknown, too 
complex, or for which no algorithms exist. Instead of start-
ing with an analysis of the problem, machine learning begins 
with data comprising instances of the problem as well as 
their answers. The field of machine learning covers 
approaches for agents (computers, robots, programs etc.) to 
discover the patterns between problems and their answers in 
an attempt to establish the underlying rules of the problem. 
These rules can then be used to produce answers to new 
instances of the problem in the future.  

Simple Neural Networks are one model of machine learn-
ing. Although their name implies a model of the brain, this 
has mostly historical reasons. Their basic function can be 
explained by an example of identifying mathematical con-
tent in teachers’ talk. A suitable neural network should be 
able to distinguish talk about mathematical functions and 
didactical functions (e.g., of representations). Figure 1(1) 
shows such a neural network, represented as a graph with 
weighted, directed edges that only flow into one direction. 

The nodes are organized in layers. Each node of a layer is 
connected to every node of predecessor and successor lay-
ers. Here, the input layer consists of only two words 
‘Didactic’ and ‘Function’. In practice, input layers are very 
large, for example consisting of one node for every word in 
a dictionary. The output layer represents the answers com-
puted by the model. In this example, the model should 
output ‘1’ if a teachers uses the word ‘Function’, but ‘0’ if it 
is combined with the word ‘Didactic’. Information flows 
from the input layer over hidden layers to the output layer 
according to the edge weights of the graph: information is 
passed on through the edges by multiplying it with the cor-
responding edge weight. Through this procedure, the hidden 
layers perform the actual calculation of identifying mathe-
matical content. They are ‘hidden’ not because they cannot 
be observed, but because in practice, their workings cannot 
meaningfully be interpreted. Neural network designers 
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Figure 1. A trained simple neural network identifying men-
tions of mathematical functions.
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Table 2. Correctly predicted labels by the model.

Sample Translation Output Label

Weil der Nenner mir ja immer angibt in wie viele gleich 
große Teile das unterteilt ist

Because the denominator always gives in how many 
equal parts it is divided

0.97589725 1

Ich denke so was sagen wie wenn ich das Ganze in mehr 
Teile zerteile brauche ich mehr kleinere Teile

I think saying how when I decompose the whole into 
more parts, that I then need more and smaller parts

0.9662741 1

Wie sollen die jetzt aufschreiben was es mit den  
gleichwertigen Brüchen auf sich hat

How should they write down what equivalent  
fractions are about

0.9239829 1

Oder irgendwie haben die das ganz toll ausgedrückt Like somehow they expressed themselves really well 0.28179163 0

Was das bedeutet What it means 0.26308453 0

Die erste Frage ist ja schon The first question already is 0.1675178 0

generally only consider the number and size of hidden layers. 
On each hidden layer, the information at each node only gets 
passed on if its input reaches a certain threshold, according to 
their activation function. This can be interpreted as the model 
selecting only the most important words for the task at hand 
and discarding the rest. For example, the activation function 
in Figure 1 only passes information on if the sum of incoming 
information is greater than 0.5. If a teacher only utters the 
word ‘function’ (2), the output node gets assigned the value 
‘1’ and thus produces an output of 1. If a teacher says both 
words “didactic function’, the edge weights cause the last 
node to receive an input sum of 0.2, which is lower than the 
activation threshold, and thus produces an output of 0. 

In practice, input layers consist of several thousand 
nodes, and there can be several hidden layers with hundreds 
of nodes. The task of training then consists in finding a 
weight function that maximizes the likelihood of the desired 
outcome given the training data. This very rough overview 
provides a description of only the most basic type of neural 
network. However, for creating and training such a model, 
knowledge of high-level concepts suffices. Various ready-
made tools and libraries of algorithms can be used that 
implement the details of machine learning, so that the 
designer of a neural network can focus mostly on the size 
and layout of the network. This design work is described 
below. 

 
The experiment 
The data set used for training the simple neural network con-
sists of two hours of transcript data of professional 
development courses collected across various research pro-
jects (e.g., Prediger, Kuhl, Büscher & Buró, 2020). As unit 
of analysis, single sentences in teachers’ utterances were 
chosen. Thus, the data corpus also includes sentence frag-
ments typical of spoken interactions. The data also required 
some pre-processing: punctuation was removed and any 
spoken number or fraction replaced by the special words 
[NUMBER] and [FRACTION]. The sentences were labeled 
by the research team by hand with ‘1’ if mathematical con-
tent was present, and ‘0’ if not. Mathematical content was 
identified if a teacher made explicit reference to (a) formal 
mathematical concepts; (b) informal mathematical concepts 
(e.g., part, whole); (c) formal mathematical activities (e.g., 

calculating, multiplying) and (d) informal mathematical 
activities (portioning, counting). Some interpretation on part 
of the coders thus was necessary to distinguish between gen-
eral and mathematical uses, for example between didactic 
functions and mathematical functions. 

During the coding process, the team consensually vali-
dated their assignments and created a full coding manual. In 
total, 1343 sentences were labeled, of which 355 were 
assigned mathematical content. Out of the 988 sentences 
without mathematical content, 355 were randomly chosen 
and used in training to achieve a balance of labeled samples. 

The data were then divided into three data sets according 
to standard machine learning methodology. The training set 
was used to train the simple neural network and consisted of 
305 randomly selected samples for each of the 355 labeled 
sentences, creating a training set of 610 samples in total. 
Given enough training, however, neural networks tend to 
overfit the training data—their weights get set according to 
the highly special case of the training data and no longer 
produce good fit for other data. Because of this, a validation 
set was used to measure the model’s performance during 
training, but did not directly influence the training of the 
model. The validation set consisted of 110 randomly 
selected samples of the training data set. Thus, the actual 
training was conducted on 500 samples, and the actual 
design of the network was tuned according to the perfor-
mance on the validation set. Finally, a test set was used as a 
one-time test to measure the end product’s performance. 

Since neural networks operate on input vectors of num-
bers, not words, the labeled sentences had to be vectorized. 
For this, one-hot encoding (Russell & Norvig, 2010) was 
employed: since there were 1511 unique words in the  
corpus, each sentence was turned into a 1511-dimensional 
vector with values ‘0’ or ‘1’. For each vector, a ‘1’ at index 
k indicates that the k-th word of the data corpus was present 
in the sentence. The vectors represent the words of a  
sentence, but do not encode word order or multiple men-
tions of words. This method was chosen since approaches 
that encode word order require more sophisticated AI meth-
ods, yet do not necessarily perform better than simple 
neural networks. 

After the previous steps of data engineering, the work of 
the researcher in this step consists of tuning number and size 
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of layers until results are satisfactory. This is an empirical 
work that comes closer to an exploration than to a rigidly 
structured procedure. Layers are added, removed, enlarged 
or narrowed, the model is trained and evaluated, and the 
resulting fit is noted down. In the end, the best discovered 
configuration of the model is taken and reported. In this 
study, the model with the best performance consisted of two 
hidden layers, each consisting of 16 nodes. The full specifi-
cation of the model [1] could now be employed by other 
researchers to reproduce the results.  

The resulting model was then used to automatically code 
the test set. Table 2 provides exemplary comparison between 
output of the model and the original labeling for some sam-
ples of the test set. The output of the model is a number 
between 0 and 1, and can be interpreted as the likelihood that 
the given sample is labeled with ‘1’, i.e., that it shows math-
ematical content. Usually, this output is rounded to the 
nearest integer. In this case, the given samples would all 
have been coded correctly: The first sentences all refer to 
mathematical terms (fractions, denominators, parts) or to 
mathematical activity (decomposing), while the last do not 
refer to mathematics.  

In other cases, the coding failed to predict the actual label, 
as Table 3 shows. These samples were not coded correctly, 
but simple neural networks provide almost no possibility for 
reconstructing the reasons that led to these outputs. Overall, 
this model performed with 76% accuracy on the test set, 
meaning that it labeled 76% of the data in the same way as 
the research team had. With the labeling team it had an inter-
rater reliability on the test set of 0.52 measured by Cohen’s 
kappa, which would commonly be considered a moderate 
agreement. This is not too bad a result, considering that only 
a very basic model with a very small data set was used. How-
ever, it is also possible that the random selection of training 
and test data has produced sampling effects that would need 
to be controlled with more sophisticated methods. 

 
Reflections, hopes and challenges 
The results of this study provide what is called a ‘proof of 
concept’ in software development, a working prototype 
showing that the general idea of using AI methods for qual-
itative research can be feasible, if only in this case in a very 
limited domain. This provides an opportunity for further 
reflections on phenomena encountered in the study. 

Learning without insight. Taken alone, the results of the 
automated coding do not seem that impressive. In the process 
of labeling the data, the labeling team searched for specific 
keywords (words denoting mathematical terms and activi-
ties), and it is not surprising that a computer program can be 
used to automatically search for such terms. The problem 
posed here simply is not such a complex problem that usually 
motivates machine learning. The important difference is that 
the team’s context knowledge of important mathematical 

words was not used directly to create a traditional algorithm, 
but that the model learned to focus on certain words all by 
itself from the labeled data. This means that the general 
method of training a model from labeled data might also suc-
ceed if the labeling criteria are more unclear to the labelers. 

Artificial objectivity. The most important use of a trained 
model is that it can now be used to analyze new data. This 
seemingly trivial observation has important methodological 
implications as it relates to questions of reproducible results. 
One method commonly employed to provide an argument 
for the quality of a coding instrument is the inter-rater relia-
bility: the degree of agreement between two different raters 
of the same data. High inter-rater reliability is used to indi-
cate that the results could theoretically be reproduced by 
others and are therefore somewhat objective. AI-based 
research could provide a different method, because the 
trained model can be shared. For example, the model trained 
for this study, along with the labeled data used for training 
and the training source code, is publicly available [2]. Not 
only is this an argument for the reproducibility of this 
study’s results. It also creates the opportunity for other 
researchers to use the model for their own research. Trained 
models can provide a kind of ‘artificial’ objectivity, in the 
sense that they provide artifacts that can be used by other 
researchers to create comparable results. 

Context and generalizability. In AI research, a model is 
ultimately judged by whether it generalizes well. This means 
that the model should identify the patterns in the training 
data for accurate predictions, but not in a too narrow way. 
The patterns used for prediction should be able to be used 
with other data as well. But the training process still is 
largely determined by the data used in training; a model can 
learn to focus on patterns that the research team failed to 
observe, but it cannot transcend the data. Therefore, the use 
of trained models in automated analysis needs to be handled 
carefully. The model trained in this study was trained on data 
from PD courses focusing on fractions, percentages, lan-
guage, and inclusive mathematics education. It is bound by 
this context and is unlikely to perform well for other mathe-
matical subjects or other types of communication. This 
limitation can likely be overcome by increasing the amount 
and diversity of training data. 

Interpreting black boxes. A challenge that arises from the 
use of neural networks is their black box character. During 
the training process, the weights of neural networks are 
adjusted in a complex way, sometimes even depending on 
randomization. For simple neural networks, there is no 
known way to effectively gauge what exactly was learned. It 
seizes on any apparent pattern found in the data, independent 
of any pattern intended by the researchers. Thus, automati-
cally analyzed transcripts need to be treated carefully. It 
might be the case that the model did not actually learn to 
focus on words denoting mathematical content. It could be 

Table 3. Wrongly predicted labels.

Sample Translation Output Label

Und ich habe dieses Jahr genau das als Wortspeicher gehabt And this year I put exactly this into a word bank 0.82973784 0

Also diese Gleichwertigkeit ja Like this equality yes 0.19835638 1
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that only a few teachers talked about mathematics, and that 
these teachers all spoke in a particular rhetorical style. If this 
was the case, the model could simply have learned to iden-
tify this style of talking, and it would fail to generalize 
beyond this data set. However, the fact that the model might 
have learned to focus on words that the labeling team did not 
deem important could also be used as a method for generat-
ing candidates for important categories: If the model 
recognized a pattern the team did not, this could be used to 
uncover theoretical blind spots of the research team.  

This problem could potentially be solved in the future. 
The visualization of what a neural network has learned is a 
current area of AI research, and some more sophisticated 
models than simple neural networks do allow better visual-
ization. Yet, the question remains: Can, and should, research 
be based on black boxes? 

Black-box definitions. Again, the black box character 
could also provide deeper methodological and theoretical 
implications relating to reproducible results. One way to con-
struct intersubjective theories is to provide closed definitions 
of central theory elements. Definitions provide standardized 
ways of interpreting constructs and provide relatable ways of 
analyzing data, thus securing scientific objectivity. Yet, as the 
work of Wittgenstein (1953/2003) shows, formal definitions 
cannot be mapped directly to reality in a clear and non-con-
tradictory way. For even research reports are formulated in 
natural language, which is ‘fuzzy’ and ambiguous. AI-based 
research could drop sophisticated definitions of theoretical 
constructs in favor of a very hands-on approach: through col-
laborative work, the research community could create a list 
of examples circumscribing a construct. Instead of explicitly 
defining that construct, a model trained on these examples 
could be shared and used. Although such a definition would 
not provide much for theory development, it nevertheless 
could prove very useful in a practical way for actually finding 
fitting instances within large bodies of data. 

Less test-theoretical tests. The identification of possibly 
fuzzy constructs in large-scale setting also provides another 
hope. Large-scale tests such as PISA or TIMSS usually 
apply narrow definitions of important constructs, such as 
conceptual knowledge. One possible reason for this are the 
tools available for evaluating large-scale assessments: Since 
the method of evaluation is quantitative test theory, large-
scale tests are designed for easy coding, which leads to 
closed-form questions that provide indicators for conceptual 
knowledge or mathematical literacy. In contrast, many prob-
lems in AI concern the processing of texts of natural 
language. AI-based research could possibly train models that 
can quickly identify constructs such as conceptual knowl-
edge in written or oral student responses that occur more 
naturally in daily classroom life. In combination with black-
box definitions, this could even lead to easily admissible 
tests for otherwise hard to quantify mathematical competen-
cies and instruction quality, such as the discursive quality of 
interactions. Thus, AI-based research could lead to less test-
theoretical large scale tests, which could provide the 
research community with instruments for creating argu-
ments that could convince policy-makers to focus on 
important aspects of mathematics education that would oth-
erwise not be easy to test. 

Deduction and induction 
The question pursued here has been one of deductive analy-
sis: can a neural network use a specified way of coding data 
for analyzing new data? Another task of qualitative mathe-
matics education would be the inductive generation of 
categories from data. In the AI field of unsupervised learn-
ing, neural networks are employed for discovering new 
patterns in data without human input. Results sometimes 
correspond to patterns recognizable by humans, and some-
times come as a surprise. Unsupervised learning thus holds 
a promise for the data-led generation of new descriptive 
knowledge, although owing to the black box character, any 
such knowledge would need to be interpreted very carefully. 

Languages and big data. Such considerations, however, 
remain in the distant future. Much more research would be 
needed to investigate the feasibility of these hopes. This 
poses a significant challenge. The quality of a neural net-
work is largely determined by the data used to train it. Data 
sets for natural language processing typically are quite large, 
comprising at least several tens of thousands or even up to 
millions and billions of samples. The data have to be labeled 
manually and consistently. Overall, data engineering repre-
sents a large area of work for AI. Additionally, language 
becomes a problem. Most work in AI is done using data in 
English language, and some crucial techniques are currently 
not available in many languages. Neural networks would 
need to be re-trained for each language. Simply translating 
available data into English would not present a solution, as 
language nuances important for mathematics education 
would likely get lost in the process. Additionally, this could 
lead to language-specific phenomena being discarded, 
which in turn could lead to a (further?) colonization of math-
ematics education research discourse by the English 
language. Data sets would need to be constructed for every 
language—which would be too large a task to handle for 
many research communities. 

 
More questions than answers 
The hopes for AI-based mathematics education research out-
lined above are high. But before their promise can be 
investigated in a methodically controlled way, much work of 
data engineering and theory building needs to be done. Too 
many theoretical questions are still open for the research 
community to adopt an AI-based approach. Neural networks 
seem capable of creating predictive knowledge by observing 
patterns, but can they also be used for establishing descrip-
tive, prescriptive or explanative knowledge (Prediger, 
2019)? Can researchers use them to generate explanations 
instead of only observations? Can they be used to generating 
new knowledge, or do they always reflect the old, either by 
the data used in training or through their constructor? Is the 
context-dependency of neural networks a handicap for 
research or is it actually an advantage? What is more impor-
tant for research: definitions that satisfy theoretical rigor or 
black boxes that enable fast applicability? Is it ethical to use 
tools that are not fully understood? What methods, best prac-
tices, and methodological rules are needed to avoid the 
pitfalls of interpreting black boxes? 

Although AI methods are state of the art regarding techno-
logical progress, they are freely available and can be applied 
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even with very little programming experience. They do 
indeed provide almost ready-to-use tools. It remains the task 
of the research community to evaluate the use of these tools 
for mathematics education research. 

 
Notes 
[1] The training of the model was carried out with the TensorFlow and 
Keras libraries. The full specification includes 2 dense hidden layers with 
16 units with relu activations, followed by a sigmoid classifier. Optimizer 
and loss function were the Keras-defaults rmsprop and binary crossentropy. 
Training was conducted for 3 epochs. 
[2] At https://ai.cbuescher.eu 
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Drawn by Sophia, age 11, on being asked to “Draw something mathematical”
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