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[E]ach generation must define afresh the nature, direc-
tion and aims of education […] For there are changes
both in circumstances and in knowledge that impose
constraints on and give opportunities to the teacher in
each succeeding generation. (Bruner, 1966, p. 22)

In keeping with the spirit of the age, researchers can
think of the laws of physics as computer programs and
the universe as a computer. (Lloyd and Ng, 2004, p. 53)

Electronic computing devices as the key phe-
nomenon of our age
What is the most important change, in the present circum-
stances, which could make an impact on mathematics
education? The appearance of various electronic computing
devices comes to mind. One way to see these instruments
from an educational perspective is as useful tools. Thus, the
two most popular applications of computing machinery in
mathematics education are educational software and utiliza-
tions of new opportunities that these devices provide for
various mathematical activities – such as function explo-
rations by graphic calculators and computer-aided numerical
solutions of equations. 

A lot of literature of diverse kinds is dedicated to these
uses. However, the impact of computers is not limited to
their applications. A new paradigm has emerged from the
computer revolution. This article discusses different aspects
of the impact of this paradigm on mathematics education. [1]

While the computer revolution obviously has serious
implications for mathematics education, the nature of these
implications is far from clear. For example, the ubiquity of
calculators and computers raises the question of relevance
for many traditional topics of educational mathematics.
Some researchers reach rather extreme conclusions, for
example, Keitel (1989), associating mathematics with the
traditional skills (numeric and algebraic manipulations), dis-
cerns a “demathematization” trend in contemporary society.
She notes that

the overwhelming majority of people in a modern soci-
ety can and do live quite well while doing hardly any
mathematics. (p. 9, original emphasis)

And so an inevitable conclusion is:

Does mathematics education in any way contribute to
the preparation of students to face reality, so as to
improve their chances of meeting this challenge com-
petently? I do not think so. (p. 12, [2])

On the other hand, the computer revolution led to huge
changes in the work market. One important aspect of these
changes is a large increase in the number of high school
graduates who continue their professional education in
mathematics-related subjects: 

Forty years ago […] it could safely be said that mathe-
matics was an elitist subject. Society’s demand for the
mathematically fluent was quite small, and those few
who survived the mathematics curriculum were more
than sufficient to fill the need for teachers, researchers,
and mathematical scientists […]

There is now a broad perception that what we do does
not work. Society now demands a technologically liter-
ate work force, and the elitist teaching methodology
developed by earlier generations of mathematicians is
no longer adequate to the job. (Gavosto et al., 1999,
Preface, p. xiii)

The following three topics are explored in the next three sec-
tions of this article: New skills, Cultural influences of
computerization on mathematics education and The com-
puter metaphor as a conceptual framework.

New skills
Keitel’s conclusion could be interpreted as meaning that
some of the major assumptions behind traditional mathemat-
ics education do not hold. Indeed, work in the computerized
environment demands peculiar mathematics-related skills,
bringing mathematics educators to new terrains, virtually
unexplored from the pedagogical perspective. 

Mathematical abilities needed to succeed in computer-
ized workplaces 

It is not easy to discern the mathematical needs of people
working at computerized workplaces: 

mathematics is not always visible: it lies beneath the
surface of practices and cultures. (Noss, 1998, p. 3)

Moreover, computer-related mathematics is of a peculiar
kind:

The sort of mathematics that arises in a computing con-
text is not necessarily what most people would consider
to be mathematics at all. Its character may seem like
that of ‘mere’ organization, symbol management, or
data manipulation. (Truss, 1999, Preface, p. v, [3])
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Many school mathematics teachers are not familiar with the
‘weird’ mathematics relevant to computers and, thus, are
unaware of the most basic future mathematical needs of their
students. As a result, school graduates are often not prepared
adequately for further studies to become competent profes-
sionals in fields of their choice. Many avoid entering
computer-related areas altogether, reducing the scope of
their employment possibilities on the one hand, and creat-
ing shortages of experts in economically important
occupations on the other hand.

In many developed countries, there is no lack of first-rate
mathematicians – candidates for academic positions, or bril-
liant teachers in privileged schools, or software developers –
who are prepared by professors from the best universities.
There are, however, shortages in the second echelon of
experts, those providing competent routine support and
maintenance for various public systems (such as program-
mers, system administrators, teachers in average schools).

The reason for this discrepancy lies in the quantitative dif-
ference in the needs for specialists of these two types. There
is only a limited demand for professional mathematicians
and inventors of new technologies. These needs are nor-
mally supplied by individuals who are naturally inclined to
the fields of their expertise and graduate from the elite
schools. This is in contrast to a huge demand for profes-
sionals who support and maintain various essential systems. 

The modern society is dependent on the professional level
of these people, because they are responsible for covering
the widening gap between the researchers and developers,
on the one hand, and the society at large, on the other hand.
Thus, the discrepancy between the initial state of these indi-
viduals (i.e., natural inclinations and typical mathematics-
related abilities at the end of the secondary school) and their
needs as professionals invites the scrutiny of researchers in
mathematics education.

The peculiarity of the mathematical needs of workers in
the computerized environment is highlighted by the fact that
two main mathematical activities on which most mathemat-
ics education has been focused, namely problem solving in
the traditional sense of providing answers to the given ques-
tions, and proving, are of secondary importance to many
computer-related applications of the support and mainte-
nance level [4]. The work of a computer professional could
be seen as incessant transitions between formal (human-
computer) and informal (human-human) communications.
Such a specialist has to have working abilities to translate
intuition to a formal language, creating definitions of new
abstract objects (functions, structures, classes). More gen-
erally, work in a computerized environment demands
abilities in reading and writing succinct and comprehensi-
ble program comments and system descriptions, technical
requests, manuals and specifications. 

Practising programmers usually do not prove the correct-
ness of their programs, they have to have intuition to
understand the meaning of code for preparing good sam-
ples of inputs to check their programs. At non-advanced
levels they are rarely concerned with the development of
new algorithms solving an ingenious mathematical problem,
rather they translate informally formulated problems to a
form suitable for existing software packages. Thus the main

mathematics-related activity in the computer context is to
comprehend and to create computer-compatible formulations. 

Mathematics education for non-mathematicians has been
developed mainly around the creation of intuitive concept
images (Tall and Vinner, 1981), while the formal side of math-
ematics (including definitions) played at best a secondary role
and was often ignored. Work with computers eliminates the
possibility of being satisfied with descriptions on the intu-
itive level: computers can only be engaged in formal talk! 

When nineteenth century thinkers such as Boole and de
Morgan developed what is now called mathematical logic,
they believed that the subject of their study was the basic
laws of human thought. This statement appeared explicitly
in the title of Boole’s ground-breaking book (Boole 1854/
1958). In the late nineteenth century, it was natural to state
that logic “is nothing if not the physics of thought” (Chase et
al., 1998, p. 206). As recently as 1943, McCulloch and Pitts
tried to explain the assumed normative logic of thought,
reducing it to the rules that govern behavior of the nervous
system cells. Their classic paper was among those that laid
theoretical foundations for constructing the first computers.
The hardware was supposed to simulate normative human
thought.

Research on human reasoning in the second part of the
twentieth century showed that the belief in the normative
character of formal logic for human thought is unfounded:

Beyond the simple problems […], it makes unrealistic
demands on the mind. In the real world, matters are more
complicated than the simple content-blind norms [asso-
ciated with formal logic]. (Chase et al., 1998, p. 206)

Meanwhile, computers, whose behavior is governed by the
laws of formal logic, became an important part of our social
landscape. And now humans, in particular those who seek
computer-related occupations, have to be educated to com-
municate in this formal language [5] – the normative
language of any computerized environment. The wheel has
come full circle! 

An additional assumption of rationalists in the last several
centuries was that humans are used to following explicit
rules in terms of which they formulate their intentions.
Recent research on human reasoning showed that most peo-
ple do not think naturally in precise terms, preferring the
fuzziness of imprecise intuition (e.g., Stanovich and West,
2000) [6]. For many people, rule following is difficult and
acquiring this ability demands a lot of practice. 

Mastering these two skills – the ability to follow strict
rules and the application of logical reasoning – amounts to
acquiring the computer-compatible mind-set. It is remark-
able that neither of these topics appears in the list of major
parts that compose the new National Council of Teachers of
Mathematics (NCTM, 1999) school curriculum. It is usually
claimed that logical and algorithmic abilities of students are
developed implicitly through other mathematical topics, but
experience contradicts this assumption. Indeed, the main
conclusion from my work of teaching these skills, to col-
lege freshmen striving to work in ‘high-tech’ industries, was
that lack in these two abilities presents the major obstacle
in the professional preparation of this population [7].
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‘Dirty’ mathematics

‘Mathematics as a science’ and ‘mathematics relevant to
education of non-mathematicians’ are two different subjects,
united by common features, with no clear line separating
them. They have different criteria for importance such as
aesthetics or difficulty. Care has to be taken if criteria
accepted in the science of mathematics are to be transferred
to its educational counterpart. It is especially true in our age
of drastic changes in educational demands.

The “theory”, illustrated in Figure 1, was given by
Freundenthal (1978) to demonstrate “grotesque misunder-
standings” (by some educators) of what a mathematical
model is: 

Contriving such models and presenting them used to be
an amusement for people who organized an institute
ball with a cabaret. In the last few years it has become a
serious concern for model makers and an ornament
to educational research. As a mathematician I am
ashamed of it. Science, in whatever area, is never so
cheap that it requires no more that mathematical jargon.
(pp. 136-137)

This example was then reprinted by Davis and Hersh (1981)
as a kind of symbol of bad mathematics. On the other hand,
as an educator of future experts in computer-related spe-
cializations, I use it to explain the essence of my pedagogical
activity. For my students, whose expertise should include
modeling pieces of reality on computers, this is an example
of bad modeling only in the sense that before dealing with
the bell (which was obviously mentioned by Freundenthal to
exacerbate the irony of the whole “theory”) a model of a
meeting has to include an element d, called door, in the
boundary of “a bounded part M of Euclidean space” to
enable the members of P to enter M.

Moreover, from my experience of working in computer
departments of various academic colleges, I can testify that
‘good’ mathematical structures frequently appear in the cur-
ricula on a FIFO (first in, first out) basis: an Algebraic
structures course is typically included in all initial curricula
– as a large course, it is then the first to be sacrificed to time
limitations and the total excessive burden of mathematical
courses. Classical mathematical structures (such as groups
and rings) rarely arise in practical computer applications.
At the same time, creating “grotesque” structures is the cen-
tral activity in object-oriented programming. The main
problem of my students, in this context, is their difficulty in
adequately formulating these models. So, this is a new prob-
lem posed to the science of mathematics education [8]. 

Cultural influences of computerization on
mathematics education
Another result of the computer revolution is the simplifi-
cation of many basic mathematical operations, leading to
changes in the relative difficulty of various topics and in
the mathematical abilities of typical students on all educa-
tional levels. Cultural changes stemming from this
development imply that the structure of mathematics, as it
is presented to students on different levels, should be recon-
sidered.

The feeling that mathematics curricula should be re-
examined is not limited to teachers of experts in compu-
terized industries. There is a recent trend among elementary
mathematics educators against teaching several of the most
basic mathematical subjects in the traditional fashion. This
sometimes includes the practising of algebraic manipula-
tion skills, but mostly it concerns arithmetic. Some
arguments of the proponents of such innovations are based
on theoretical considerations related to constructivist edu-
cation, but the strongest support for change stems from the
ubiquity of electronic calculators, and the feeling of the
demathematization of our society. 

Stated bluntly, the proponents of this view claim that the
introduction of calculators made drilling children in arith-
metic unnecessary. Some educators, who are unwilling to
make such extreme statements, invite derision from the rad-
icals, since there is no sound basis for their position:

It is either beyond justification (“you simply must
know how to…”), or founded in nostalgia (“at least
once in one’s life one should have done…”). (Keitel,
1989, p. 11)

On the other hand, many mathematicians and mathematically
educated parents feel strongly against this trend. The main
argument of the opponents of drastic changes in arithmetic
curricula is that the topics taught in the elementary school are
not isolated subjects. There is a long tradition of developing
the mathematical culture of students banking on their knowl-
edge and abilities acquired during primary mathematics
education. Many of the opponents of traditional teaching are
unaware of the use of the abilities acquired in the elemen-
tary school during more advanced mathematics education
(for a discussion of this point, see Klein and Milgram, 2000). 

The vast majority of the population is unconcerned with
this problem. The existence of the mathematically unaware
majority implies that many parents would not like their chil-
dren to be subjected to what they perceive as unnecessary
senseless drilling for the sake of some ‘dubious’ benefits in
their future education. No convincing arguments from sci-
entists will help. For the time being, the system continues
through inertia, but it cannot be sustained in the long run any
more than the teaching of classical languages, which were
abolished when education became egalitarian.

The conclusion is that educators who are aware of the
contribution of elementary school mathematics to advanced
education have to search for alternative ways of inculcat-
ing these skills, while helping delay the changes until an
alternative has been created. In the secondary school
humanities curricula, ancient literature written in Greek and
Latin have been substituted successfully by works of recent
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Figure 1: An illustrative example
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authors writing in modern languages. There is no reason to
believe that it is impossible to update in mathematics. 

Concerning the secondary-tertiary mathematics education
interface, the relevance of school mathematics curricula is
frequently questioned by college educators. On the one
hand, it does not provide the needed abilities:

It is now accepted that A-level no longer provides what
it used to as a preparation for university study. (Kent
and Noss, 2002, p. 9)

On the other hand, there are unnecessary demands:

There is a feeling expressed by some practitioners and
academics that the A-level mathematics requirement is
acting as a block against allowing a more diverse group
of people to enter into the civil and structural engineer-
ing profession. (p. 14)

Looking from the opposite direction, some of what seem to
be essential topics appear in the college curricula for tradi-
tional reasons, e.g., as a result of the custom of creating
mathematics courses for non-mathematicians as watered-
down versions of professional mathematics courses. Some
of the learning chains (chains of skills or concepts), which
justify the teaching of elementary topics because they pro-
vide the basis for advanced subjects, now could end in
questionable ‘maximal elements’. As an example, consider
the long division� division of polynomials � integration of
rational functions chain. Is it really essential to teach various
intricate integration methods to different populations learn-
ing calculus? The importance of these techniques lies in the
fact that they are a tool to obtain a result in terms of ele-
mentary functions. Many important integrals do not have
such features (e.g., elliptical functions or Bessel functions).
Someone who needs to make a computation in which such
integrals are involved uses approximations, consults tables,
or turns to calculators and computers. 

So, why bother if one more family of functions is added to
this list? As long as most students had the required alge-
braic skills this question was not worth considering, now one
may claim that the ends of teaching some techniques do not
justify the means. Just compare the situation with that of
polynomial equations. Similarly, there is no analytical solu-
tion for most equations (those of high powers). The
analytical solution for cubic equations obtained by Cardano
has been available since the sixteenth century. However, for
many years, almost nobody, including professional mathe-
maticians, has studied this solution. If such an equation is
encountered it is usual either to use some approximation or
turn to handbooks for the formula.

Research programs studying mathematics from the edu-
cational point of view, constructing alternative chains of
needed competences, could be useful both for the immediate
purpose and also for a better understanding of the structure
of mathematics [9]. There is no ultimate hierarchy from sim-
ple to difficult – it depends on tradition. Actually, the history
of the position of arithmetic in mathematics is the best
example: for many centuries the best scientists had no dex-
terity in division and even multiplication, using tables in
their computations. In the Hellenic tradition, logic could be
considered more elementary than arithmetic.

The computer metaphor as a conceptual
framework
In addition to a demand for changes, the computer revolu-
tion creates new conceptual opportunities. A viable
metaphor is known to be helpful to the learning process
(e.g., Sfard, 1994) [10]. It is one of the contributions of sci-
ence and technology to give us metaphors that we can use
to organize and express our experience in life (Kadanoff,
2002). Most mathematical topics taught to non-mathemati-
cians developed before the computer age. So, computers
did not appear among the metaphors around which mathe-
matics has grown. What is the potential of this metaphor?

Virtual computers

A computer is a tangible object and the model of computa-
tion associated with it can be understood in concrete terms.
Thus, it seems fruitful to reformulate various mathematical
topics in terms inspired by the computer metaphor. This can
help students cope with the abstractness of mathematics
(similarly, for example, to various metaphors that made neg-
ative numbers teachable in primary schools [11]).   

The abstract nature of mathematics (and, in particular, that
of algebra) is a perpetual cause of negative feelings towards
mathematics among generations of high school students.
This abstractness stems from the platonic model of mathe-
matics, which is natural to mathematics teachers [12]. The
lack of tangible references plays an important part in creat-
ing a feeling of the irrelevance of mathematics in many
students, including those who like to work with computers. 

Recent developments in mathematics education show that
reification, i.e., thinking in terms of objects, is an important
part in absorption of new material (e.g., Sfard, 1994). The
nature of mathematical objects is a serious philosophical
problem. Most working mathematicians (and certainly the
vast majority of mathematics teachers) are not interested in
this question, being satisfied with the vague Platonism men-
tioned above. It is only natural that schoolchildren have
difficulties in creating models of unknowns and parame-
ters, for instance. So, it is worthwhile to attempt to create
concrete models of mathematical objects [13]. 

It is important to stress the difference between a computer
as a tool (real computers) and as a concept (virtual comput-
ers). The use, and even the existence, of real computers is
neither a necessary nor sufficient condition for the use of
computers as a conceptual framework. This use is similar
to the various formalisms aimed to conceptualize the mean-
ing of algorithm (such as the Turing machine). They were
invented before the appearance of computational hardware,
and inspired the first computer designers. The problem of all
these formalisms from the educational perspective is intri-
cate technical details. Since the present purpose is of a
different nature we can discard these details in educational
applications [14].

Here is a prime use of the computer metaphor [15]. It is
built around a simple model of a computer (see Figure 2),
which could be called a virtual computer. This model
includes various computer-related notions that naturally
arise when one thinks about mathematics in terms of this
metaphor. A virtual computer could be seen as a device
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somewhat like a food processor: the basic frame with mod-
ular hardware. The hardware is composed of container cells
and processing units. Inputs are inserted in special input
cells. An output is returned at the outlet (e.g., special output
cells) and can be taken (copied) for further use. For each
type of object, there are cells of a suitable structure.  For
each processing unit, there is a specific type of allowed
input, so that only objects of this type can serve as inputs. No
two units can be used simultaneously. New units can be
added to a device. To solve the problem amounts to design-
ing a suitable internal structure of the processing unit.

The computer metaphor invites the writing of mathemat-
ics in an algorithmic style, emphasizing the algorithmic
nature of mathematics. Teaching algebra along these lines
transfers the stress from numerical problems to solutions of
generic (parameterized) problems. A natural way to do
mathematics in algorithmic style is writing in simple
pseudocode. Such pseudocode, used below, is based on just
three standard structures (assignment, conditioning, and the
WHILE-loop).

As an example, consider the solution of a linear equation,
ax = b (see Figure 3).

Apparently the two representations are very similar, how-
ever, there are important differences in the meanings assigned
to various symbols. The algorithmic style representation helps
create tangible models for mathematical objects:

1. Parameters a and b in SimpleLinearEquation (a,b)
[SLE] are inputs inserted in specific cells.

2. The computed value of the unknown is the output.

The command “RETURN b/a” leads to a delivery
of the result at the outlet. Thus, a clear distinction
between parameters (as inputs) and unknowns (as
outputs) is established.

3. SLE is an algorithm object supporting reification. 

4. The functional form of writing SLE (a,b) empha-
sizes the dependence of the solution on parameters. 

5. The algorithmic style naturally focuses attention
on special cases, encouraging use of the “IF”
clause, while in the traditional way the uncondi-
tional “x = b/a” answer is a common mistake.

Now, the algorithmic style solution can be associated with
the internal structure of the processing unit, depicted as a
flowchart (see Figure 4).  

Algorithm (SLE) can be used in the solution of other
equations, turning attention to reduction as an essential tool
of mathematics. The “return to the previous problem” line
does not usually appear in standard mathematics textbooks,
while using a previously written procedure is natural in algo-
rithmic style.

Consider the equation a1x + b1 = a2x+ b2. There are two
possibilities to describe the solving procedure:

1. inserting “a1 – a2” into the A cell and “b2 – b1” into
the B cell (see Figure 6a);
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Figure 2: The generic metaphor

Figure 3: Contrasting regular and algorithmic styles of solu-
tion of the equation ax = b.

Figure 4: The solving unit for the linear equation ax = b.
Figure 4a: The external view Figure 4b: Internal structure of the solving unit 
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2. connecting to the A and B cells an additional unit
which prepares correct input for  the basic unit
solving SLE (see Figure 6b).

There are striking similarities between the constructivist ten-
dency in mathematics education and the object-oriented
approach in computer science. While the former emphasizes
the construction of ‘cognitive’ mathematical objects, the
latter demands that a computer specialist define formal
objects for computer applications. Thus, in addition to being
less abstract, the cognitive reification explicitly taught as a
method, prepares mathematics students to work in an object-
oriented environment [16].  

Computer-referred definition of mathematics

Truss’s description of computer-related mathematics (see
page 43 this article) provokes a question: how can we talk
about mathematics that “most people would not consider to
be mathematics at all”? Suppose someone says: “This is a
chair, but most people would not consider it to be a chair.”
What could such a statement possibly mean? A reasonable
interpretation is that this piece of furniture was built to be sat
on, but it is not obvious from its look. Such understanding
comes from the dictionary definition of a chair. So what is its
analogue for mathematics?  

Khait (2005, p. 145) suggested the following answer to
this question. A topic/ an object/ a statement belongs to
the scope of mathematics whenever words (symbols and

diagrams included) that appear in it could be assigned with
precise meanings, otherwise mathematics cannot be applied
in a natural way. Mathematics is a linguistic activity, which
is characterized by the association of words with precise
meanings.

Concerning the meaning of “precise meanings”, the sit-
uation can be compared with that of the concept of
algorithm. The latter is delimited by the Church thesis that
essentially states

that all serious proposals for a model of computation
have the same power. (Hopcroft et al., 2001, p. 318)

If we limit ourselves to finite mathematics, to which most
mathematics relevant for computer-related applications
belongs, then computers can serve as the precision crite-
rion: a precise formulation is one that can be translated for
a computer. The importance of such a tangible reference is
most clear when we consider infinite mathematics. Indeed,
concerning infinite structures and theories there is no such
referee except the public opinion of colleagues [17].

Concluding remarks
Returning to the quotations at the beginning of this article,
mathematics educators should reconsider their subject in the
light of changes in circumstances. The arrival of a new con-
ceptual paradigm associated with computing devices, which
substituted the nineteenth century machine as the basic
metaphor used in description of a wide range of phenomena,
suggests a direction for such work. Creating a unifying view of
educational mathematics around the computer paradigm can
serve as a unifying umbrella for a wide range of diverse topics. 

Changes in mathematics education that stem from the
computer revolution have the potential of making an impact
on mathematics as a science, similarly to that which hap-
pened about 200 years ago when technological development
led to drastic changes in mathematics education [18]. Thus,
it becomes a fascinating subject from the purely mathemat-
ical perspective.

Notes
[1] In different sections of the article “mathematics education” is interpreted
according to the context as general school education or as preparation of
experts for computer-related specializations. These two aspects are strongly
connected both because obligatory education has to enable graduates to pur-
sue careers of their choice, and because mathematics-related abilities
needed for the general population living in computer-infested environments
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Figure 5: Contrasting regular and algorithmic styles of solu-
tion of the equation a1x + b1 = a2x+ b2.

Figure 6: Two possible solving units for the equation a1x + b1 = a2x + b2.

Figure 6a Figure 6b
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are similar (albeit less advanced) to that of professionals in computerized
workplaces [3].
[2] Since the time these remarks were published, the feeling of dispens-
ability of traditional mathematics education, which then was more a subject
of academic discussion, has penetrated the society as a whole. Children
are less inclined to learn mathematics in schools. Thus,

the problem of a gap between the expectations and reality of
the mathematical competence of new undergraduate students
has been a concern across all numerate degree subjects since the
mid-90s. (Kent and Noss, 2002, p. 9)

[3] Note the similarity to the mathematics-related expectations of an aver-
age citizen to react adequately to the deluge of information bearing data of
various types.
[4] This is in contrast to that of the research and development level where the
mathematical demands are on par with those of professional mathematicians.
[5] By this I mean a generic language of communication in the formal con-
text, independent of specific devices or software. The means of formal
communications in mathematics is a prototype of formal languages.
[6] One may hypothesize that the main problem of learning mathematics
stems from the gap between the natural fuzziness of human thought and the
need for precision in doing mathematics (for a discussion, see Khait, 2005).
[7] Khait, A. (2004) ‘Advanced mathematical thinking in computerized
environment’, presented in Topic Study Group 13: Research and develop-
ment in the teaching and learning of advanced mathematical topics ICMI10,
http://www.icme-organisers.dk/tsg13, last accessed, 29th June, 2005.
[8] In addition to its direct utility, the analysis of mathematical contents of
such ‘dirty’ problems from the educational perspective can lead to deeper
understanding of the nature of basic mathematical structures in the context
of the mathematics/average-humans interface.
[9] Khait (2003a) argued that the urgency of research in teaching elemen-
tary subjects could be downgraded, while the highest research priority
should receive inculcation of new advanced topics (needed for work in the
computerized environment) into students who are not inclined to mathe-
matics. This is because there is no tradition of teaching a new kind of
mathematics to such a population, in contrast to the long experience of
teaching arithmetic successfully to most children attending reasonable
schools. It seems that the cultural aspect has to be taken into account and the
conclusion concerning the elementary subjects has to be amended along the
lines presented in this section.
[10] Moreover, emerging from Lakoff and Núñez (2000), all our thinking,
including the most abstract, is bound to our bodily experience and based
on physical metaphors.
[11] To appreciate the non-trivial nature of this fact, it is sufficient to note
that Augustus de Morgan argued in 1830s that it is wrong to teach children
such a “nonsensical” subject as negative numbers (Pycior, 1983).

A basic and often implicit underlying philosophy of mathematics
in teaching is that of ‘sufficiently liberal Platonism’, which
teachers have acquired during their university studies and then
taken with them to school. (Seeger and Steinbring, 1994, p. 151).
One of the many features of computer programs […] is that they
present objects. Thus they can be used to support reification.
(Mason, 1989, p. 6).

[14] Without entering into the arguments, note that the positive effect of
extensive use of computers in teaching mathematics is controversial. So,
Dubinsky (2000) advocates using programming to facilitate mathematics
learning, while Kent and Noss (2002) are less enthusiastic:

Two negative factors are the high cost of moving ‘chalk and
talk’ mathematics teaching out of lecture rooms and into com-
puter laboratories, and the lack of a common grounding in
mathematical technology in school mathematics curricula.
There are significant dangers in losing the teaching of pen-and-
paper mathematical techniques to ‘button pressing’. (p. 10)

[15] A development of an idea first presented in Khait (2003b). 
[16] A unified approach introducing students to mathematics and computer
science could be fruitful for both. Khait (2003b) considers the eventual con-
vergence of mathematics education with computer science education.
[17] This was clearly demonstrated by the history of the acceptance of Can-
tor set theory by the mathematical community (e.g., Dauben, 1990).
[18] See Grabiner (1974/1986) for a historical description of this episode.
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