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MATHEMATICAL PROBLEM SOLVING AND 
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Research in mathematics education suggests that learning to 
solve a problem should involve modelling and visual repre-
sentation (e.g., Lesh & Zawojewski, 2007). Nunokava (1994) 
advocates that the usefulness of visual representations “lies, 
we think, in the fact that it can show relationships between 
elements in the problem clearly” (p. 34). According to 
researchers, transforming a mental representation of a situa-
tion into a visual representation of mathematical relationships 
between quantities enhances students’ mathematical thinking 
and contributes to problem-solving ability development. In 
our pre-service teacher training courses, we implement a 
relational approach to problem solving (Polotskaia & Savard, 
2018). We introduce our students to a system of basic quanti-
tative relationships together with their visual representations. 
To develop students’ mastery of this specific modelling tool, 
we propose some more complex problems for them to repre-
sent visually. One such representation triggered a student’s 
remark, “This is Picasso for me”, meaning “This is difficult 
to understand”. We would like to explore the following ques-
tion: What is the connection between modern visual arts (for 
example cubism) and the visual representation of a mathe-
matical problem? What makes our understanding of a visual 
representation or drawing difficult? 
 
Visual representations in mathematics 
Since ancient times, mathematicians have valued visualiza-

tion of different mathematical relationships and used visual 
representations to support their reasoning and proofs. In his 
book, Roger Nelsen (1993) provides multiple visual proofs 
developed by ancient and modern mathematicians from all 
over the world. These days, mathematicians use computers 
to create representations of very complex mathematical 
objects. For example, Figure 1 presents a computer-created 
fractal structure. 

It is also known that some mathematicians use their artis-
tic talent to produce images of very abstract mathematical 
concepts. A representation of the Deformation of the Rie-
mann Surface of an Algebraic Function (see Figure 2) 
created by a mathematician Anatoly Timofeevich Fomenko, 
full member of the Russian Academy of Sciences, professor 
of the Moscow State Lomonosov University, is an example 
of such artistic interpretation of a mathematical idea. These 
visual representations certainly help to make better sense of 
the mathematics at hand. 

 
Visual representations of mathematical rela-
tionships 
In elementary school, children usually learn to represent 
objects one by one to count them or visually represent  
numbers as tens and units to carry out a calculation. In  
some countries, students use simple schemas to represent 
operations or elementary quantitative relationships  

Figure 1. Sierpinski triangle, fractal structure, named after 
the famous Polish mathematician Waclaw  
Sierpinski.

Figure 2. Fomenko, A. T., 1983. Deformation of the Rie-
mann Surface of an Algebraic Function. [1]



(e.g., Venenciano & Dougherty, 2014; Davydov, 1982). 
These basic schemas help students learn to solve simple (not 
complex) arithmetic word problems. Is this basic use of 
modelling (schematizing) enough for students to be able to 
solve problems that are more complex? What is a complex 
problem? Let us analyze the example that triggered the 
remark about Picasso. 

Problem: I need to pack muffins into boxes. If I put 3 
muffins in each box, I would need 8 boxes more than if 
I put them 5 per box. How many muffins do I have? 

We represent this problem in Figure 3. 
The left rectangle represents the case when muffins are 

placed in rows of three, and the right one when the same 
muffins are placed in rows of five. The upper part of the left 
rectangle represents ‘8 boxes more’ than in the right case. 
The shaded right part of the right rectangle represents the two 
muffins more in each box of 5 (taken all together). It is easy 
to notice that the unshaded part of the left rectangle and the 
unshaded part of the right rectangle represent the same num-
ber of muffins. At the same time, the left and right rectangles 
represent the same total number of muffins. Therefore, the 
shaded rectangles represent the same number of muffins. 
Thus, we can propose an arithmetic solution to this problem. 

5 — 3 = 2 (muffins more in each box of five than in a 
box of three) 

8 × 3 = 24 (muffins in the 8 boxes of three = all extra 
muffins in the boxes of five) 

24 ÷ 2 = 12 (boxes of five) 

12 × 5 = 60 (total muffins) 

In order to evaluate the complexity of this problem, we pro-
pose to look at the number of mathematical relationships one 
needs to analyze and model, as well as their natures. 

If I put 3 muffins in each box–This text describes a 
multiplicative relationship R1. (Figure 4): 3 × NB3 = T 
(NB3:  number of boxes of three; T: a total of muffins) 

I would need 8 boxes more than–This text describes 
an additive relationship R2. (Figure 5): NB3 — NB5 = 8 
(NB5: number of boxes of five) 

If I put them 5 per box–This text describes a multi-
plicative relationship R3. (Figure 6): 5 × NB5 = T
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Figure 3 Representation of the Muffins’ problem

Figure 4. Representation of relationship R1.

Figure 5. Representation of relationship R2.

Figure 6. Representation of relationship R3.

Figure 7. Representation of relationship R5.



Two more relationships are implicit. 

R4: T = T, because in two cases the same number of 
muffins were used. 

R5 (Figure 7): 5 — 3 = 2, therefore, we put two muffins 
more in each box of five (in comparison to the box of 
three). 

The relationships R1, R2, and R3 involve two unknown 
quantities each. Therefore, arithmetic reasoning cannot be 
applied immediately, and our understanding of the problem 
cannot be simplified gradually by intermediate calculations. 
Here, we used a visual modelling approach to help visualize 
and better understand all mathematical relationships 
involved (Figure 3). This way, we can see or find new rela-
tionships and finally produce an arithmetic solution. The 
following relationships can be found:   

R8: The total muffins in small boxes is composed of two 
parts: the muffins in 8 small boxes and the rest.  

R9: The total of muffins in large boxes is composed of two 
parts: all muffins in groups of 3 put together and all muffins 
in groups of 2 put together. 

R10: The rest of muffins in small boxes is the same as ‘all 
muffins in groups of 3 put together’ in large boxes because 
these rectangles have the same dimensions: 3 and the number 
of large boxes. 

Another approach would be algebraic modeling. People 
familiar with algebra would say that it is easy to compose the 
following equation 5x = 3(x + 8). However, the solver com-
posing this equation should be able to analyze the same 
mathematical relationships altogether (but this time, men-
tally). Thus, many students will find it difficult to compose 
such an equation for the problem. 

 
Difficulties with complexity 
Let us look again at the analogy launched by our student: 
“This is Picasso for me”. This student’s remark suggests that 
the cognitive obstacle she experienced was of the same 
nature that some viewers face in front of abstract painting. 
According to Weltzl-Fairchild’s (Weltzl-Fairchild & E�mond, 
2000) typology of cognitive dissonances, the analogy 
expressed by the student to manifest her misunderstanding 
would mainly refer to two types of dissonance related to a 
difficult aesthetic experience. The first is a dissonance 
between the expectations of the viewer and the experience of 
the work (a conflict arising from the artistic object and the 
notions of beauty and/or communication). The second is a 
perceived dissonance between the artistic object itself and 
what it symbolizes (a conflict between certain parts of the 
artistic object as well as a conflict between the symbolic mes-
sage and the means of expression). Thus, we will see how the 
elements of information given by both the algebraic problem 
and the fragmented composition of the Spanish painter com-
plexify their respective analysis and interpretation. It is a 
question of studying the similarities between the process of 
modelling by visual processing proposed above and the 
process of aesthetic appreciation of a work belonging to ana-
lytical cubism, such as Le Poète (1911) by Pablo Picasso [2]. 

The meaning and beauty of abstract art do not come to us 
directly from the forms and objects themselves. At first 

glance, Le Poète is composed of rectangular prisms, curves 
and straight lines. Though, the interplay of simple elements, 
light and dark, lines and angles, their relationships and con-
versations with each other, can reveal a harmony of rhythms 
and emotions–a distinct experience of beauty proposed by 
the artist. We agree with Sinclair (2002) that the “personal 
and subjective” plays the same role in the aesthetic experi-
ence in art as it plays in mathematical problem solving, 
largely determining the quality of this experience.  Thus, for 
an unprepared observer, multiple relationships (with multiple 
unknowns) present in an art work or in a mathematical prob-
lem make the conversation between those elements difficult 
to grasp.  

Csíkszentmihályi and Robinson (1990) specify that the 
cognitive dimension of aesthetic experience in art comes in 
two forms: closed and open-ended. They affirm that, “Certain 
individuals, for example, employed intellect in the service of 
achieving a kind of closure, while others used cognitive 
means to open up works to more varied interpretations”  
(p. 42). The art of Picasso invites the observer to imagine, to 
go beyond the directly observable. In our mathematical 
example, the student was probably trying to interpret the 
problem and the visual model strictly based on her school 
experience, where numbers are usually represented visually 
as tens and units. The forms representing relationships were 
difficult for her to imagine. Thus, her relationship to the prob-
lem can be interpreted as ‘closed’. The role of the university 
instructor will then be to help students ‘open up’, to consider 
new points of view, develop new ways of thinking and mod-
eling, be prepared to better meet the varied needs of their 
future students. This brings us back to Picasso and the hope 
that our students adopt his interpretation of learning: “J’es-
saie toujours de faire ce que je ne sais pas faire, c’est ainsi 
que j’espère apprendre à le faire” [3]. 

 
Conclusion 
Surprised by a remark of one of our students, who compared 
a mathematical representation to an abstract painting, we 
tried to understand the connections between the complexity 
of a mathematical problem and that of abstract art. In both 
cases, an observer or solver should analyze and reconstruct 
for herself multiple known and unknown elements (visible 
and implicit objects) and multiple relationships between ele-
ments. The goal of this process is to create a harmonious and 
logically-sound holistic mental representation of the situa-
tion: the mathematics behind the word description or 
graphical representation, or the ideas of the artist behind the 
lines, forms, and colours.  

In his recent publication, Alshwaikh (2018) argues for a 
better use of diagrams to support school students’ learning of 
mathematics. He writes: 

mathematics is often presented in classrooms and text-
books as abstract, symbolic and devoid of human 
agency, a view which affects students’ access to mathe-
matics. If we understand what is communicated in 
diagrams–whether they tell a story and include human 
agency or whether they are conceptual and ‘timeless’–
we can better design textbooks and better understand 
what they communicate to learners. (p. 13) 
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We can add that the ability to embrace the complexity of 
the world is crucial for mathematics as well as for the work of 
art. Unfortunately, the development of such ability is regu-
larly ignored by the school curricula. The use of simple 
drawings, such as the schemas we discussed, could possibly 
help students access and develop the agency needed to solve 
more complex problems. 

 
Notes 
[1] On-line at http://virtualmathmuseum.org/mathart/ ArtGalleryAnatoly/ 
Anatolyindex.html 
[2] Pablo Picasso, Le Poète, 1911, oil on linen, 131.2 x 89.5 cm, The Peggy 
Guggenheim Collection, Venice. See https://www.e-venise.com/musees_ 
venise/ guggenheim/ pablo-picasso-le-poete-peggy-guggenheim-venise.html 
[3] “I always try to do what I don’t know how to do, this is how I hope to 
learn to do it” (from https://citations.ouest-france.fr/citations-pablo-
picasso-658.html, our translation).  

 
References 
Alshwaikh, J. (2018) Diagrams as communication in mathematics dis-

course: a social semiotic account. For the Learning of Mathematics 
38(2), 9—13. 

Csíkszentmihályi, M. & Robinson, R. E. (1990) The Art of Seeing: An Inter-
pretation of the Aesthetic Encounter. The Paul Getty Museum. 

Davydov, V. V. (1982) Psychological characteristics of the formation of 
mathematical operations in children. In Carpenter, T.P., Moser, J.M. & 
Romberg, T.A. (Eds.), Addition and Subtraction: A Cognitive Perspec-
tive, 225—238. Lawrence Erlbaum Associates. 

Lesh, R. & Zawojewski, J. (2007) Problem Solving and Modeling. In 
Lester, F.K.J. (Ed.), Second Handbook of Research on Mathematics 
Teaching and Learning, Vol. 1, 763—787. IAP. 

Nelsen, R. (1993) Proofs Without Words. Exercises in Visual Thinking. The 
Mathematical Association of America. 

Nunokawa, K. (1994) Using diagrams in problem solving. For the Learning 
of Mathematics 14(1), 34—38. 

Polotskaia, E. & Savard, A. (2018) Using the Relational Paradigm: effects 
on pupils’ reasoning in solving additive word problems. Research in 
Mathematics Education 20(1), 70—90. 

Sinclair, N. (2002) The kissing triangles: the aesthetics of mathematical dis-
covery. The International Journal of Computers for Mathematics 
Learning 7(1), 45—63. 

Venenciano, L. & Dougherty, B.J. (2014) Addressing priorities for elemen-
tary school mathematics. For the Learning of Mathematics 34(1), 18—24. 

Weltzl-Fairchild, A. & E�mond, A.M. (2000) Oh, that’s beautiful! or conso-
nance and the adult museum visitor. In Allard, M & Lefebvre, B. Muse�e, 
culture et e�ducation / Museum, culture and education, 143—152. E�ditions 
MultiMondes.

4


