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In a fifth-grade classroom (10-11 years old), the following
task is presented for solving [1]:

46, 81, 70, 106
Which numbers are divisible by 2?

As soon as the task is stated, several students raise their
hands to respond. To begin, Louis asserts that 46 is divisible
by 2 because the digits 4 and 6 are themselves divisible by 2.
The teacher invites the rest of the class to share their
thoughts. Marie counters by explaining that she divided 46
directly by 2, obtaining 23. The teacher reformulates the two
strategies: focusing separately on the divisibility of the digits
4 and 6, or dividing 46 as a whole. Zack builds on this by
clarifying that Louis’s approach involves verifying whether
each digit is even or odd. Damien, in turn, argues that the
two strategies ultimately converge, as both involve dividing
by 2. Julie then proposes that this reasoning also applies to
the number 106, since dividing it by 2 yields 53 and 53.
Mathis contributes by breaking 106 into 100 and 6, explain-
ing that 100 can be seen as two 50s and 6 as two 3s. The
teacher reiterates this decomposition strategy and asks
whether other decompositions might also be possible. Sev-
eral examples of decompositions of 106 are then provided,
leading the class to question whether the divisibility of a
number’s parts implies the divisibility of the entire number.
Various ideas emerge, and different decompositions are
recorded on the board. An observation of these examples
then leads the class to wonder in which cases an even num-
ber divided by two results in an odd number. The discussion
unfolds until the bell signals the end of the session.

This session highlights the students’ engagement with the
task. They proposed diverse strategies, built on each other’s
ideas, and collectively advanced toward resolving the task.
However, one might question whether they truly solved a
mathematical problem—or, more specifically, a good math-
ematical problem. The issue of what constitutes a (good)
mathematical problem has long been a focus of research in
the tradition of problem solving studies. In this article, I aim
to further these reflections by examining this question from
a collective perspective.

The cognitive theory of enaction (e.g., Maturana &
Varela, 1992) highlights the fundamental role of inter-
actions between an individual and their environment in the
development and enactment of knowledge. The emphasis on
the terms ‘inter’ and ‘action’ serves to underscore that, from
an enactivist perspective, knowledge is conceived as an
action carried out by the knower, and it draws attention to
the crucial role of the environment in the emergence of each

action (Towers & Proulx, 2013). According to this view, the
environment and the individual are always in inter-action,
creating a mutual compatibility that enables their respective
functioning. The environment acts as a trigger for change in
the individual, just as the individual acts as a trigger for
change in the environment. These inter-actions and changes
unfold within a loop of mutual influence, wherein each con-
tinuously shapes the development of the other. This dynamic
invites us to consider the classroom not as a mere collection
of individuals acting side by side, but as a collectivity that
moves forward through re-actions with one another, and
where the actions of some open up new possibilities for
action for others. From such a perspective, the teacher’s
actions in the classroom are seen as triggered by those of the
students, just as students’ actions are stimulated by those of
the teacher and their peers (Towers & Proulx, 2013). The
actions of each individual are thus understood as contingent
upon and elicited by the actions of others. Constituted in an
inter-active manner, these actions cannot be easily attributed
to any single individual. Rather, they appear to emerge from
the classroom as a whole, arising from inter-actions rather
than from an isolated individual (McGarvey et al., 2022). In
this sense, it becomes possible to conceptualize the mathe-
matics classroom—typically composed of the teacher and
students—as an entity, as a collective that jointly engages in
mathematical activity. In recent years, various researchers
grounded in enaction have investigated the classroom as a
collective entity, theorizing about the potential of collective
actions to generate new possibilities within the mathematics
classroom (see, e.g., McGarvey et al., 2022). By taking the
classroom collective as the unit of analysis, this body of
work shows that new phenomena can emerge—phenomena
that could not be brought forth by an individual alone.
Indeed, such collective phenomena do not necessarily
belong to or reside within each individual; rather, they arise
through and from the inter-actions enacted by the collective
(McGarvey et al., 2022). In attending to the mathematics
classroom at this collective level, I propose in what follows
to conceptualize the notion of collective mathematical prob-
lems—as phenomena that arise through and by way of the
inter-actions enabled by the collective itself. In a previous
article (Barabé, 2023), I introduced an initial conceptualiza-
tion of this notion, illustrating various forms it can take in
the classroom. In this article, I build on this conceptualiza-
tion, extending it further to formalize it by proposing a
definition that captures its essence. I also examine how these
collective mathematical problems can emerge in the class-
room while (re)positioning them in relation to the notion of
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‘good’ mathematical problem for the classroom. To establish
a foundation for this discussion, I begin by reviewing the
concept of ‘mathematical problem’.

The notion of mathematical problem

The notion of mathematical problem has been the subject of
extensive research, particularly during the 1980s. Various
definitions of this notion exist, but it is generally understood
as comprising three key dimensions: emergence, uncer-
tainty, and relativity. For instance, Brun (1990) defines the
concept of a problem as follows:

un probléme est généralement défini comme une situa-
tion initiale avec un but a atteindre, demandant a un
sujet d’¢élaborer une suite d’actions ou d’opérations
pour atteindre ce but. Il n’y a probléme que dans un
rapport sujet/situation, ou la solution n’est pas
disponible d’emblée, mais possible a construire. C’est
dire aussi que le probléme pour un sujet donné peut ne
pas étre un probléme pour un autre sujet, en fonction de
leur niveau de développement intellectuel par exemple.
(p. 2, bold removed) [2]

The dimension of emergence refers to the idea that for a
task to become a problem for an individual, it must emerge as
such for that person. A task becomes a problem if the individ-
ual accepts it as such (Agre, 1982). To be a problem, the
individual must engage in the search for a solution: “A prob-
lem is not a Problem until one wants to solve it.” (Schoenfeld,
1983, p. 41). Thus, when a person devises a series of actions
or operations to achieve the goal set by an initial situation, as
highlighted by Brun, they are engaging with a problem that
has emerged for them. A problem emerges through an individ-
ual’s inter-action with a task when they actively engage with
that task. In this sense, many researchers propose distinguish-
ing between a ‘task’ and a ‘problem’:

Thus, the terminology of ‘problem’ is not very practi-
cal. Many researchers in the field use ‘task’
terminology, which is associated with the formulation
of the task, and not in relation to a particular solver. A
task can become a ‘good problem’ for some solvers in
some conditions and a routine problem (or not a prob-
lem) for other solvers or in different conditions.
(Hoshino, Polotskaia & Reid, 2016, p. 156)

Moreover, when a problem emerges for an individual, it
must present a challenge; in other words, the person must
not immediately know a solution, or the solution must not be
readily available, to borrow Brun’s terminology. This is the
dimension of uncertainty in a problem. A task becomes a
problem if it raises uncertainty for the individual attempting
to solve it (Beghetto, 2017). Otherwise, it would not be con-
sidered a genuine problem but rather a routine problem, as
described by Hoshino, Polotskaia and Reid. The distinction
between a problem and a routine problem (or exercise) is
often reiterated in the literature:

A problem is a situation that differs from an exercise in
that the problem solver does not have a procedure or
algorithm which will certainly lead to a solution. (Kan-
towski, 1981, cited in Borasi, 1986, p. 132)

First, a problem is only a Problem (as mathematicians
use the term) if you don’t know how to go about solv-
ing it. A problem that holds no ‘surprises’ in store, and
that can be solved comfortably by routine or familiar
procedures (no matter how difficult!) is an exercise.
(Schoenfeld, 1983, p. 41)

For a task to qualify as a problem, it must challenge the
person attempting to solve it. However, this challenge is also
seen as relative to the individual and the context in which
they find themselves. This is the relativity of a problem, the
final dimension of this concept. A problem may be a chal-
lenge for one person but not for another, or it may be
challenging one day but not the next, depending on the con-
text and/or the person’s evolving knowledge (Agre, 1982;
Brun, 1990). These three dimensions—emergence, uncer-
tainty, and relativity—form the foundation of the notion of a
mathematical problem as it is typically defined in research.

For instance, regarding the divisibility-by-2 task, one
might argue that Louis and Marie (among others)
approached the task in a certain way, engaging with it such
that it became a problem for them. Others, however, might
challenge this notion, claiming that it is unclear whether
uncertainty or a genuine challenge was present for these stu-
dents and suggesting instead that this was merely the
resolution of an exercise—especially since such a task is rel-
atively straightforward for students at this age level. When
we examine the notion of a mathematical problem and, by
extension, problem solving, we often focus on the individ-
ual: on what the task generates for that person in terms of a
problem or problem solving activity. Alternatively, we may
analyze the task itself to determine whether it qualifies, or
not, as routine (see, e.g., Woodwart et al., 2018). However,
the three dimensions central to the notion of a mathematical
problem highlights its dynamic, emergent and evolving
nature. A mathematical problem emerges when an individual
encounters a situation that introduces uncertainty and
actively engages in addressing it. While this situation is gen-
erally considered to be an initial task posed for resolution,
uncertainty may not always be present at the outset but can
emerge during the activity. This engagement with emerging
uncertainty can thus occur as the activity unfolds. Conse-
quently, these three dimensions underlying the notion of a
mathematical problem do not necessarily refer to an initial
task that immediately prompts a problem for an individual
but can also be understood as an event or situation that arises
and generates a problem for them during the course of reso-
lution. Close connections can be drawn here with certain
strands of research on problem posing, particularly those
focusing on problem posing during problem solving (Silver,
1994). As discussed in Barabé and Proulx (2015), this line of
work is situated within an implicit perspective, in which
problem posing is seen as defining the very activity of
problem solving itself, manifesting implicitly through it,
without any (explicit) request to pose a problem being made.
Thus, to determine whether a person has solved one or more
mathematical problems, it is essential to examine the math-
ematical activity itself, considering the presence of
uncertainties and the person’s engagement in overcoming
them. From this perspective, rather than viewing the notion



of a mathematical problem as emerging a priori from a pro-
posed mathematical task, it can also be understood as arising
from the ongoing mathematical activity itself, assessed dur-
ing or even a posteriori to the solving of the task. This leads
to moving beyond the initial task and what it generates
‘directly’ for an individual, connecting instead to the activity
that can transform the task into a genuine problem. These
three dimensions of a mathematical problem bring into ques-
tion the inter-action between an individual and the situation
they encounter. This inter-action inevitably evolves, pro-
gresses, and shifts as the mathematical activity unfolds.
Such a conceptualization of the notion of mathematical
problem as a phenomenon that can take shape or emerge in
the classroom shifts attention toward the activity taking
place. Since the mathematics classroom is a space where
teachers and students interact with one another, another way
to analyze what occurred during this session in terms of the
problems addressed or worked on is to consider what
emerged at the collective level—that is, what arose from the
mathematical activity carried out in the classroom.

Collective mathematical problems and emer-
gent mathematical activity

By focusing on what can emerge from a collective activity, it
becomes possible to revisit the three dimensions that consti-
tute the notion of mathematical problem in order to develop
the concept of a collective mathematical problem.

(1) Emergence: For a problem to exist, it must emerge
within a collective. This emergence occurs as the col-
lective interacts with a task it seeks to solve. A problem
emerges for the collective if there is a desire to address
a mathematical situation that arises, with the intention
of resolving it. The collective then accepts to engage in
solving this situation. A collective mathematical prob-
lem is thus brought to the forefront by a collective, in a
given situation, as it commits to resolving it.

(2) Uncertainty: When a collective mathematical prob-
lem emerges, it presents a challenge for the collective,
which does not immediately know how to resolve it. A
mathematical situation can thus become a collective
mathematical problem as soon as a mathematical
uncertainty arises within the collective—one that it
does not immediately know how to overcome, yet
chooses to engage with in an effort to resolve.

(3) Relativity: The collective mathematical problem
that emerges depends on the collective itself. Faced
with the same initial task, a mathematical situation may
emerge and generate a collective mathematical prob-
lem for one collective but not for another. Similarly, a
collective may engage with such a problem at one
moment but no longer perceive it as a problem the fol-
lowing day, depending on the progression of their
mathematical understanding and skills, for example.

A collective mathematical problem can thus be defined as
a mathematical situation that arises contingently from a col-
lective activity and that presents a mathematical uncertainty
for the collective—an uncertainty that the group does not

immediately know how to overcome, yet chooses to engage
with in an effort to resolve. A collective mathematical prob-
lem thus occurs when a mathematical uncertainty,
experienced in situ, emerges from a collective activity, and
the collective engages with it. It seems important to note
that this mathematical uncertainty is considered at the level
of the collective—that is, at the level of the group—and
could therefore be experienced differently by each individ-
ual [3]. However, the conceptualization of collective
mathematical problems proposed here aim to focus on what
results from the inter-actions within the collective, and not
on what is produced or experienced by each individual taken
in isolation, although this could certainly be of interest. Fur-
thermore, these uncertainties, as elaborated in Barabé
(2023), can take various forms, leading to a distinction
between two types of collective mathematical problems:
content-related collective mathematical problems and meta-
mathematical collective problems. The former refers to
uncertainties related to mathematical concepts, techniques,
or methods, while the latter pertains to meta-mathematical
dimensions, such as engaging in mathematics with others
(e.g., having to explain or justify ideas to ensure mutual
understanding). For instance, when a mathematical error
emerges in the classroom, the collective may struggle to
make sense of it. The error may create doubt about its
plausibility and/or lead to difficulties in collectively under-
standing, explaining, and justifying what does not work and
what could work. Addressing the error, with all the explana-
tions, justifications, and validations it may entail, can
quickly introduce additional challenges for the collective,
prompting it to resolve the collective mathematical problem
related to the error. Similarly, the sharing of a strategy or
mathematical idea—whether correct or not—can create a
need for further explanations or justifications that are not
readily available, prompting the collective to engage with an
uncertainty tied to the development of mathematical expla-
nations and justifications to satisfy the collective. Errors to
overcome, strategies requiring clarification, justification,
and validation, and conjectures to investigate are all
examples of collective mathematical problems, whether
content-related and/or meta-mathematical (both of which
can occur simultaneously), that can emerge from classroom
inter-actions. Their emergence can lead the collective into
authentic problem solving, particularly with problems con-
tingent on ongoing activity, where the pathway to a solution
remains unknown to the collective. The argument put for-
ward in this article is that solving these collective
mathematical problems constitutes a legitimate form of
problem solving, one that takes into account ongoing math-
ematical activity and thus goes beyond the ‘direct’
emergence of a problem from an initial task. These collec-
tive mathematical problems are embedded in the
mathematical activity initiated by the collective, illustrating
the various challenges it experiences through its engagement
in the activity.

I now return to the session briefly described earlier to
examine more closely what can occur when we focus on the
collective and what can emerge from it. Over the 50-minute
session, various uncertainties emerged from classroom inter-
actions, and the collective engaged with them. Several



collective mathematical problems surfaced:

1. Can we verify whether each digit of a number is
divisible by 2 to determine whether the entire num-
ber is divisible by 2?7

2. How can we do this with 106? How can we decom-
pose 106? What is the value of the 10 in 106?

3. If the decompositions are divisible, is the entire
number also divisible?

4. In what cases does dividing an even number by 2
results in an odd number?

The first collective mathematical problem arose from an
initial claim that 46 is divisible by 2 because both 4 and 6 are
divisible by 2. In the classroom, this claim prompted a
request for validation—not just of the answer but of the
strategy itself. The strategy became the new problem to
solve, as the collective debated its validity in all cases. This
constitutes a collective mathematical problem, as an uncer-
tainty emerged contingently from the mathematical activity
occurring in class, and the collective engaged in resolving it.
In doing so, the collective proposed various explanations,
examples, and counterexamples to make sense of the strat-
egy. This led them to assert that the strategy works and could
also work with the number 106, which was part of the initial
task data. This proposition quickly triggered mathematical
argumentation, as the collective was divided on the validity
of the strategy for this particular number. The example of
106 in the context of dividing each digit by 2 led to a second
collective mathematical problem: determining whether the
strategy works for 106. This problem remained more local-
ized, focusing specifically on 106 while introducing
additional challenges related to a three-digit number, one of
which is zero. To resolve this problem, the collective pre-
sented various explanations and justifications, explored
multiple decompositions of 106 (as illustrated in Figure 1),
and reflected on the value of the 10 in the number.

These decompositions were then examined by the collec-
tive, focusing on their parity and leading to the formulation
of a mathematical question: “If the decompositions are
divisible, is the entire number necessarily divisible as well?”
This mathematical question became a third collective math-
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Figure 1. Different decompositions of 106 proposed during
the session.

ematical problem to resolve, as the collective faced an
uncertainty it sought to overcome. Justifications and exam-
ples were proposed to address this question. The
investigation of these examples led to the formulation of a
conjecture that an even number divided by 2 always results
in an odd number. This conjecture gave rise to a fourth col-
lective mathematical problem: “In what cases does dividing
an even number by 2 result in an odd number?” Faced with
this uncertainty, the collective explored new examples, some
yielding odd numbers (as shown on the left side of Figure 2)
and others even numbers (as shown on the right side of Fig-
ure 2). The collective then proposed explanations, validated
and invalidated different elements, and sought generaliza-
tions, among other activities.

Once this fourth collective mathematical problem was
resolved, the bell rang, marking the end of the session. Fur-
ther strategies or ideas could have been shared and
discussed, potentially leading to the emergence of new col-
lective mathematical problems to solve. A remaining
question is to understand how such collective mathematical
problems can form in the classroom.

Collective mathematical problems and
mathematical practices

A close examination of the mathematical actions fore-
grounded by the collective can contribute to a better
understanding of how collective mathematical problems
emerge in the classroom. Building on research related to
inquiry-based approaches to mathematics education (e.g.,
Cobb, Perlwitz & Underwood, 1994), mathematical actions
that are inter-actively constituted and grounded in the social
conventions of the classroom are referred to as mathematical
practices. These practices encompass, for example, forms of
activity such as explaining, justifying, validating, arguing,
exemplifying, formulating mathematical conjectures or
questions, overcoming errors or uncertainties, using symbols
and representations, or drawing on a body of established
mathematical knowledge. This session on the divisibility by
2 illustrates that the deployment of such mathematical prac-
tices in the classroom can not only advance the resolution of
the initial task but also contribute to the emergence of new
collective mathematical problems to be explored. Indeed, it
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Figure 2. Investigation of the collective mathematical prob-
lem arising from the conjecture of an even number
divided by 2 resulting in an odd number.



was the validation of the strategy that 46 is divisible by 2
because both 4 and 6 are divisible by 2 that gave rise to the
first collective mathematical problem. To solve it, explana-
tions, examples, and counterexamples were provided. An
argumentation regarding the application of this strategy to
the number 106 emerged, leading to the second collective
mathematical problem. Various explanations and justifica-
tions were proposed to address it, during which different
decompositions of 106 were suggested. This process
prompted the formulation of a mathematical question, which
became the third collective mathematical problem. Exam-
ples and justifications were presented to solve this problem,
eventually leading to the formulation of a conjecture. The
conjecture then became the focus of the fourth collective
mathematical problem. In his work, Schoenfeld (2020)
emphasizes that the importance of problem solving lies in
the deployment of mathematical practices and mathematical
ways of thinking. However, it appears that the deployment
of mathematical practices also generates new mathematical
problems to solve—collective mathematical problems that
inherently emerge from such activity. A kind of ‘snowball
effect’ seems to occur. Mathematical practices are put forth
by the collective in response to an initial task. These prac-
tices, in turn, stimulate the use of additional mathematical
practices by the collective. Their deployment can generate
uncertainties for the collective, prompting it to resolve them.
For instance, the validity of a strategy might be questioned
and investigated; an explanation perceived as imprecise
might generate further inquiries; an error might occur,
prompting the collective to make sense of it; a conjecture
might be formulated, prompting exploration of its domain of
validity; or examples and counterexamples might be pro-
posed, resulting in mathematical argumentation. The
mathematical practices enacted in the classroom can thus
generate moments of uncertainty, and when the collective
engages in addressing these uncertainties, collective mathe-
matical problems emerge. In turn, the resolution of these
collective mathematical problems calls for the enactment of
new mathematical practices. And so the cycle continues...
This suggests a mutual influence loop between the deploy-
ment of mathematical practices and the emergence of
collective mathematical problems, unfolding through and
driven by the inter-actions that take place in the classroom as
the collective works to solve an initial mathematical task.
This recalls the work of Grenier and Payan (2002), who dis-
cuss the never-ending nature of exploiting a mathematical
task, as new mathematical problems can always be formu-
lated. However, while such problem formulation is often
done either before the solving of the task, by modifying var-
ious didactic variables (e.g., Zhang et al., 2022), or after its
resolution, as in Polya’s (1945) well known Looking Back
strategy, the example presented here highlights that mathe-
matical problems can also arise contingently, that is, during
the collective mathematical activity occurring in the class-
room—emerging naturally and inherently from the activity
itself. The concept of collective mathematical problems aims
to shift our focus toward the mathematical activity as it
unfolds in the classroom, drawing attention to the mathemat-
ical problems experienced by the collective.

Final reflection on ‘good’ mathematical
problems
While the notion of a mathematical problem often serves as a
point of departure, several studies in problem solving
research also focus on what makes a problem a ‘good’ prob-
lem. Liljedahl (2020) argues that good mathematical
problems are those in which students initially get stuck, but
which lead them to think, to experiment, to try things out, and
ultimately to mobilize their knowledge in original ways in
order to break through the impasse. For Schoenfeld (2020), a
good problem fosters mathematical investigation—that is, it
allows for the formulation of conjectures, the establishment
of connections, abstraction, generalization, and the genera-
tion of new problems to be solved. While research in this
field often focuses on the initial task proposed to students as
a means of triggering rich and authentic mathematical activ-
ity, one question that arises is whether collective
mathematical problems—emerging from in situ mathemati-
cal activity—may also be considered good mathematical
problems. Good problems may certainly exhibit various char-
acteristics, depending on their formulation and design, but it
seems that such characteristics may also arise within the
classroom over the course of activity. In this context, future
research could seek to better understand whether the collec-
tive resolution of routine problems (i.e., exercises), which
gives rise to such emergent collective mathematical prob-
lems, can lead to mathematical activity similar to that which
is typically elicited by initially formulated good problems.
Such research could help challenge the widely held
dichotomy between routine problems and good mathemati-
cal problems, by illustrating the richness of mathematical
activity that may emerge when collective mathematical
problems are recognized and investigated within the class-
room. Given that most of the teaching material used by
teachers consists largely of routine problems (Beghetto,
2017), such research may help to bridge the gap that some-
times separates the scientific and practical communities.
However, further research exploring the conditions under
which collective mathematical problems emerge and are
investigated—through an analysis of teaching practices that
foster, support, or make use of them, as well as the resulting
mathematical activity among students—would be valuable
for better understanding the scope and limitations of this
notion of collective mathematical problems in classroom
teaching. Moreover, because collective mathematical prob-
lems are inherently tied to the ongoing activity, it is
reasonable to consider that they may carry a certain signifi-
cance for the collective that seeks to resolve them. This
raises a central question: For whom are these problems good
mathematical problems? To address this question, it may be
helpful to consider different perspectives: for instance, that
of the researcher, who seeks to observe students engaging in
mathematical activity akin to that of mathematicians; that of
the teacher, who aims to support students in learning specific
content; or that of the students themselves, as they encounter
and formulate problems through the mathematical activity
unfolding in the classroom. In this sense, this article high-
lights the complexity of the notion of (good) mathematical
problems and proposes to broaden it by paying closer atten-
tion to what unfolds and emerges through classroom



activity—emphasizing the emergent and contingent nature
of problems and the situated, socially constructed nature of
mathematical activity in the classroom (Cobb, Perlwitz &
Underwood, 1994), while also inviting consideration of the
multiple perspectives involved in defining what constitutes
a good problem for the classroom.
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Notes

[1] This session comes from a Teaching Experiment conducted as part of a
research project on problem solving (see Proulx, 2018, for more details).
[2] In English: A problem is generally defined as an initial situation with a
goal to achieve, requiring the subject to devise a series of actions or opera-
tions to reach that goal. A problem only exists within a subject/situation
relationship, where the solution is not immediately available but is possible
to construct. This also means that what constitutes a problem for one subject
may not be a problem for another, depending on their level of intellectual
development, for example. (free translation)

[3] Obviously, the teacher could, quite often, prevent these uncertainties
from unfolding in the classroom by immediately offering a way to resolve
them each time they begin to emerge. The teaching context thus plays an
important role in the emergence of collective mathematical problems in the
classroom. This role of the teacher, which would warrant more in-depth
investigation, nevertheless lies beyond the scope of the present article.
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