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TOWARDS THE NOTION OF COLLECTIVE 
MATHEMATICAL PROBLEMS 

GENEVIÈVE BARABÉ

In a fifth-grade classroom (10-11 years old), the following 
task is presented for solving [1]: 

46, 81, 70, 106 

Which numbers are divisible by 2? 

As soon as the task is stated, several students raise their 
hands to respond. To begin, Louis asserts that 46 is divisible 
by 2 because the digits 4 and 6 are themselves divisible by 2. 
The teacher invites the rest of the class to share their 
thoughts. Marie counters by explaining that she divided 46 
directly by 2, obtaining 23. The teacher reformulates the two 
strategies: focusing separately on the divisibility of the digits 
4 and 6, or dividing 46 as a whole. Zack builds on this by 
clarifying that Louis’s approach involves verifying whether 
each digit is even or odd. Damien, in turn, argues that the 
two strategies ultimately converge, as both involve dividing 
by 2. Julie then proposes that this reasoning also applies to 
the number 106, since dividing it by 2 yields 53 and 53. 
Mathis contributes by breaking 106 into 100 and 6, explain-
ing that 100 can be seen as two 50s and 6 as two 3s. The 
teacher reiterates this decomposition strategy and asks 
whether other decompositions might also be possible. Sev-
eral examples of decompositions of 106 are then provided, 
leading the class to question whether the divisibility of a 
number’s parts implies the divisibility of the entire number. 
Various ideas emerge, and different decompositions are 
recorded on the board. An observation of these examples 
then leads the class to wonder in which cases an even num-
ber divided by two results in an odd number. The discussion 
unfolds until the bell signals the end of the session. 

This session highlights the students’ engagement with the 
task. They proposed diverse strategies, built on each other’s 
ideas, and collectively advanced toward resolving the task. 
However, one might question whether they truly solved a 
mathematical problem—or, more specifically, a good math-
ematical problem. The issue of what constitutes a (good) 
mathematical problem has long been a focus of research in 
the tradition of problem solving studies. In this article, I aim 
to further these reflections by examining this question from 
a collective perspective. 

The cognitive theory of enaction (e.g., Maturana & 
Varela, 1992) highlights the fundamental role of inter-
actions between an individual and their environment in the 
development and enactment of knowledge. The emphasis on 
the terms ‘inter’ and ‘action’ serves to underscore that, from 
an enactivist perspective, knowledge is conceived as an 
action carried out by the knower, and it draws attention to 
the crucial role of the environment in the emergence of each 

action (Towers & Proulx, 2013). According to this view, the 
environment and the individual are always in inter-action, 
creating a mutual compatibility that enables their respective 
functioning. The environment acts as a trigger for change in 
the individual, just as the individual acts as a trigger for 
change in the environment. These inter-actions and changes 
unfold within a loop of mutual influence, wherein each con-
tinuously shapes the development of the other. This dynamic 
invites us to consider the classroom not as a mere collection 
of individuals acting side by side, but as a collectivity that 
moves forward through re-actions with one another, and 
where the actions of some open up new possibilities for 
action for others. From such a perspective, the teacher’s 
actions in the classroom are seen as triggered by those of the 
students, just as students’ actions are stimulated by those of 
the teacher and their peers (Towers & Proulx, 2013). The 
actions of each individual are thus understood as contingent 
upon and elicited by the actions of others. Constituted in an 
inter-active manner, these actions cannot be easily attributed 
to any single individual. Rather, they appear to emerge from 
the classroom as a whole, arising from inter-actions rather 
than from an isolated individual (McGarvey et al., 2022). In 
this sense, it becomes possible to conceptualize the mathe-
matics classroom—typically composed of the teacher and 
students—as an entity, as a collective that jointly engages in 
mathematical activity. In recent years, various researchers 
grounded in enaction have investigated the classroom as a 
collective entity, theorizing about the potential of collective 
actions to generate new possibilities within the mathematics 
classroom (see, e.g., McGarvey et al., 2022). By taking the 
classroom collective as the unit of analysis, this body of 
work shows that new phenomena can emerge—phenomena 
that could not be brought forth by an individual alone. 
Indeed, such collective phenomena do not necessarily 
belong to or reside within each individual; rather, they arise 
through and from the inter-actions enacted by the collective 
(McGarvey et al., 2022). In attending to the mathematics 
classroom at this collective level, I propose in what follows 
to conceptualize the notion of collective mathematical prob-
lems—as phenomena that arise through and by way of the 
inter-actions enabled by the collective itself. In a previous 
article (Barabé, 2023), I introduced an initial conceptualiza-
tion of this notion, illustrating various forms it can take in 
the classroom. In this article, I build on this conceptualiza-
tion, extending it further to formalize it by proposing a 
definition that captures its essence. I also examine how these 
collective mathematical problems can emerge in the class-
room while (re)positioning them in relation to the notion of 



‘good’ mathematical problem for the classroom. To establish 
a foundation for this discussion, I begin by reviewing the 
concept of ‘mathematical problem’. 

 
The notion of mathematical problem 
The notion of mathematical problem has been the subject of 
extensive research, particularly during the 1980s. Various 
definitions of this notion exist, but it is generally understood 
as comprising three key dimensions: emergence, uncer-
tainty, and relativity. For instance, Brun (1990) defines the 
concept of a problem as follows:   

un problème est généralement défini comme une situa-
tion initiale avec un but à atteindre, demandant à un 
sujet d’élaborer une suite d’actions ou d’opérations 
pour atteindre ce but. Il n’y a problème que dans un 
rapport sujet/situation, où la solution n’est pas 
disponible d’emblée, mais possible à construire. C’est 
dire aussi que le problème pour un sujet donné peut ne 
pas être un problème pour un autre sujet, en fonction de 
leur niveau de développement intellectuel par exemple. 
(p. 2, bold removed) [2] 

The dimension of emergence refers to the idea that for a 
task to become a problem for an individual, it must emerge as 
such for that person. A task becomes a problem if the individ-
ual accepts it as such (Agre, 1982). To be a problem, the 
individual must engage in the search for a solution: “A prob-
lem is not a Problem until one wants to solve it.” (Schoenfeld, 
1983, p. 41). Thus, when a person devises a series of actions 
or operations to achieve the goal set by an initial situation, as 
highlighted by Brun, they are engaging with a problem that 
has emerged for them. A problem emerges through an individ-
ual’s inter-action with a task when they actively engage with 
that task. In this sense, many researchers propose distinguish-
ing between a ‘task’ and a ‘problem’:   

Thus, the terminology of ‘problem’ is not very practi-
cal. Many researchers in the field use ‘task’ 
terminology, which is associated with the formulation 
of the task, and not in relation to a particular solver. A 
task can become a ‘good problem’ for some solvers in 
some conditions and a routine problem (or not a prob-
lem) for other solvers or in different conditions. 
(Hoshino, Polotskaia & Reid, 2016, p. 156)   

Moreover, when a problem emerges for an individual, it 
must present a challenge; in other words, the person must 
not immediately know a solution, or the solution must not be 
readily available, to borrow Brun’s terminology. This is the 
dimension of uncertainty in a problem. A task becomes a 
problem if it raises uncertainty for the individual attempting 
to solve it (Beghetto, 2017). Otherwise, it would not be con-
sidered a genuine problem but rather a routine problem, as 
described by Hoshino, Polotskaia and Reid. The distinction 
between a problem and a routine problem (or exercise) is 
often reiterated in the literature: 

A problem is a situation that differs from an exercise in 
that the problem solver does not have a procedure or 
algorithm which will certainly lead to a solution. (Kan-
towski, 1981, cited in Borasi, 1986, p. 132)  

First, a problem is only a Problem (as mathematicians 
use the term) if you don’t know how to go about solv-
ing it. A problem that holds no ‘surprises’ in store, and 
that can be solved comfortably by routine or familiar 
procedures (no matter how difficult!) is an exercise. 
(Schoenfeld, 1983, p. 41)   

For a task to qualify as a problem, it must challenge the 
person attempting to solve it. However, this challenge is also 
seen as relative to the individual and the context in which 
they find themselves. This is the relativity of a problem, the 
final dimension of this concept. A problem may be a chal-
lenge for one person but not for another, or it may be 
challenging one day but not the next, depending on the con-
text and/or the person’s evolving knowledge (Agre, 1982; 
Brun, 1990). These three dimensions—emergence, uncer-
tainty, and relativity—form the foundation of the notion of a 
mathematical problem as it is typically defined in research. 

For instance, regarding the divisibility-by-2 task, one 
might argue that Louis and Marie (among others) 
approached the task in a certain way, engaging with it such 
that it became a problem for them. Others, however, might 
challenge this notion, claiming that it is unclear whether 
uncertainty or a genuine challenge was present for these stu-
dents and suggesting instead that this was merely the 
resolution of an exercise—especially since such a task is rel-
atively straightforward for students at this age level. When 
we examine the notion of a mathematical problem and, by 
extension, problem solving, we often focus on the individ-
ual: on what the task generates for that person in terms of a 
problem or problem solving activity. Alternatively, we may 
analyze the task itself to determine whether it qualifies, or 
not, as routine (see, e.g., Woodwart et al., 2018). However, 
the three dimensions central to the notion of a mathematical 
problem highlights its dynamic, emergent and evolving 
nature. A mathematical problem emerges when an individual 
encounters a situation that introduces uncertainty and 
actively engages in addressing it. While this situation is gen-
erally considered to be an initial task posed for resolution, 
uncertainty may not always be present at the outset but can 
emerge during the activity. This engagement with emerging 
uncertainty can thus occur as the activity unfolds.  Conse-
quently, these three dimensions underlying the notion of a 
mathematical problem do not necessarily refer to an initial 
task that immediately prompts a problem for an individual 
but can also be understood as an event or situation that arises 
and generates a problem for them during the course of reso-
lution. Close connections can be drawn here with certain 
strands of research on problem posing, particularly those 
focusing on problem posing during problem solving (Silver, 
1994). As discussed in Barabé and Proulx (2015), this line of 
work is situated within an implicit perspective, in which 
problem posing is seen as defining the very activity of  
problem solving itself, manifesting implicitly through it, 
without any (explicit) request to pose a problem being made. 
Thus, to determine whether a person has solved one or more 
mathematical problems, it is essential to examine the math-
ematical activity itself, considering the presence of 
uncertainties and the person’s engagement in overcoming 
them. From this perspective, rather than viewing the notion 
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of a mathematical problem as emerging a priori from a pro-
posed mathematical task, it can also be understood as arising 
from the ongoing mathematical activity itself, assessed dur-
ing or even a posteriori to the solving of the task. This leads 
to moving beyond the initial task and what it generates 
‘directly’ for an individual, connecting instead to the activity 
that can transform the task into a genuine problem. These 
three dimensions of a mathematical problem bring into ques-
tion the inter-action between an individual and the situation 
they encounter. This inter-action inevitably evolves, pro-
gresses, and shifts as the mathematical activity unfolds. 
Such a conceptualization of the notion of mathematical 
problem as a phenomenon that can take shape or emerge in 
the classroom shifts attention toward the activity taking 
place. Since the mathematics classroom is a space where 
teachers and students interact with one another, another way 
to analyze what occurred during this session in terms of the 
problems addressed or worked on is to consider what 
emerged at the collective level—that is, what arose from the 
mathematical activity carried out in the classroom. 

 
Collective mathematical problems and emer-
gent mathematical activity 
By focusing on what can emerge from a collective activity, it 
becomes possible to revisit the three dimensions that consti-
tute the notion of mathematical problem in order to develop 
the concept of a collective mathematical problem. 

(1) Emergence: For a problem to exist, it must emerge 
within a collective. This emergence occurs as the col-
lective interacts with a task it seeks to solve. A problem 
emerges for the collective if there is a desire to address 
a mathematical situation that arises, with the intention 
of resolving it. The collective then accepts to engage in 
solving this situation. A collective mathematical prob-
lem is thus brought to the forefront by a collective, in a 
given situation, as it commits to resolving it. 

(2) Uncertainty: When a collective mathematical prob-
lem emerges, it presents a challenge for the collective, 
which does not immediately know how to resolve it. A 
mathematical situation can thus become a collective 
mathematical problem as soon as a mathematical 
uncertainty arises within the collective—one that it 
does not immediately know how to overcome, yet 
chooses to engage with in an effort to resolve. 

(3) Relativity: The collective mathematical problem 
that emerges depends on the collective itself. Faced 
with the same initial task, a mathematical situation may 
emerge and generate a collective mathematical prob-
lem for one collective but not for another. Similarly, a 
collective may engage with such a problem at one 
moment but no longer perceive it as a problem the fol-
lowing day, depending on the progression of their 
mathematical understanding and skills, for example. 

A collective mathematical problem can thus be defined as 
a mathematical situation that arises contingently from a col-
lective activity and that presents a mathematical uncertainty 
for the collective—an uncertainty that the group does not 

immediately know how to overcome, yet chooses to engage 
with in an effort to resolve. A collective mathematical prob-
lem thus occurs when a mathematical uncertainty, 
experienced in situ, emerges from a collective activity, and 
the collective engages with it. It seems important to note  
that this mathematical uncertainty is considered at the level 
of the collective—that is, at the level of the group—and 
could therefore be experienced differently by each individ-
ual [3]. However, the conceptualization of collective 
mathematical problems proposed here aim to focus on what 
results from the inter-actions within the collective, and not 
on what is produced or experienced by each individual taken 
in isolation, although this could certainly be of interest. Fur-
thermore, these uncertainties, as elaborated in Barabé 
(2023), can take various forms, leading to a distinction 
between two types of collective mathematical problems: 
content-related collective mathematical problems and meta-
mathematical collective problems. The former refers to 
uncertainties related to mathematical concepts, techniques, 
or methods, while the latter pertains to meta-mathematical 
dimensions, such as engaging in mathematics with others 
(e.g., having to explain or justify ideas to ensure mutual 
understanding). For instance, when a mathematical error 
emerges in the classroom, the collective may struggle to 
make sense of it. The error may create doubt about its  
plausibility and/or lead to difficulties in collectively under-
standing, explaining, and justifying what does not work and 
what could work. Addressing the error, with all the explana-
tions, justifications, and validations it may entail, can 
quickly introduce additional challenges for the collective, 
prompting it to resolve the collective mathematical problem 
related to the error. Similarly, the sharing of a strategy or 
mathematical idea—whether correct or not—can create a 
need for further explanations or justifications that are not 
readily available, prompting the collective to engage with an 
uncertainty tied to the development of mathematical expla-
nations and justifications to satisfy the collective. Errors to 
overcome, strategies requiring clarification, justification, 
and validation, and conjectures to investigate are all  
examples of collective mathematical problems, whether 
content-related and/or meta-mathematical (both of which 
can occur simultaneously), that can emerge from classroom 
inter-actions. Their emergence can lead the collective into 
authentic problem solving, particularly with problems con-
tingent on ongoing activity, where the pathway to a solution 
remains unknown to the collective. The argument put for-
ward in this article is that solving these collective 
mathematical problems constitutes a legitimate form of 
problem solving, one that takes into account ongoing math-
ematical activity and thus goes beyond the ‘direct’ 
emergence of a problem from an initial task. These collec-
tive mathematical problems are embedded in the 
mathematical activity initiated by the collective, illustrating 
the various challenges it experiences through its engagement 
in the activity. 

I now return to the session briefly described earlier to 
examine more closely what can occur when we focus on the 
collective and what can emerge from it. Over the 50-minute 
session, various uncertainties emerged from classroom inter-
actions, and the collective engaged with them. Several 
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collective mathematical problems surfaced: 

1. Can we verify whether each digit of a number is 
divisible by 2 to determine whether the entire num-
ber is divisible by 2? 

2. How can we do this with 106? How can we decom-
pose 106? What is the value of the 10 in 106? 

3. If the decompositions are divisible, is the entire 
number also divisible? 

4. In what cases does dividing an even number by 2 
results in an odd number? 

The first collective mathematical problem arose from an 
initial claim that 46 is divisible by 2 because both 4 and 6 are 
divisible by 2. In the classroom, this claim prompted a 
request for validation—not just of the answer but of the 
strategy itself. The strategy became the new problem to 
solve, as the collective debated its validity in all cases. This 
constitutes a collective mathematical problem, as an uncer-
tainty emerged contingently from the mathematical activity 
occurring in class, and the collective engaged in resolving it. 
In doing so, the collective proposed various explanations, 
examples, and counterexamples to make sense of the strat-
egy. This led them to assert that the strategy works and could 
also work with the number 106, which was part of the initial 
task data. This proposition quickly triggered mathematical 
argumentation, as the collective was divided on the validity 
of the strategy for this particular number. The example of 
106 in the context of dividing each digit by 2 led to a second 
collective mathematical problem: determining whether the 
strategy works for 106. This problem remained more local-
ized, focusing specifically on 106 while introducing 
additional challenges related to a three-digit number, one of 
which is zero. To resolve this problem, the collective pre-
sented various explanations and justifications, explored 
multiple decompositions of 106 (as illustrated in Figure 1), 
and reflected on the value of the 10 in the number. 

These decompositions were then examined by the collec-
tive, focusing on their parity and leading to the formulation 
of a mathematical question: “If the decompositions are 
divisible, is the entire number necessarily divisible as well?” 
This mathematical question became a third collective math-

ematical problem to resolve, as the collective faced an 
uncertainty it sought to overcome. Justifications and exam-
ples were proposed to address this question. The 
investigation of these examples led to the formulation of a 
conjecture that an even number divided by 2 always results 
in an odd number. This conjecture gave rise to a fourth col-
lective mathematical problem: “In what cases does dividing 
an even number by 2 result in an odd number?” Faced with 
this uncertainty, the collective explored new examples, some 
yielding odd numbers (as shown on the left side of Figure 2) 
and others even numbers (as shown on the right side of Fig-
ure 2). The collective then proposed explanations, validated 
and invalidated different elements, and sought generaliza-
tions, among other activities. 

Once this fourth collective mathematical problem was 
resolved, the bell rang, marking the end of the session. Fur-
ther strategies or ideas could have been shared and 
discussed, potentially leading to the emergence of new col-
lective mathematical problems to solve. A remaining 
question is to understand how such collective mathematical 
problems can form in the classroom. 

 
Collective mathematical problems and  
mathematical practices 
A close examination of the mathematical actions fore-
grounded by the collective can contribute to a better 
understanding of how collective mathematical problems 
emerge in the classroom. Building on research related to 
inquiry-based approaches to mathematics education (e.g., 
Cobb, Perlwitz & Underwood, 1994), mathematical actions 
that are inter-actively constituted and grounded in the social 
conventions of the classroom are referred to as mathematical 
practices. These practices encompass, for example, forms of 
activity such as explaining, justifying, validating, arguing, 
exemplifying, formulating mathematical conjectures or 
questions, overcoming errors or uncertainties, using symbols 
and representations, or drawing on a body of established 
mathematical knowledge. This session on the divisibility by 
2 illustrates that the deployment of such mathematical prac-
tices in the classroom can not only advance the resolution of 
the initial task but also contribute to the emergence of new 
collective mathematical problems to be explored. Indeed, it 
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Figure 1. Different decompositions of 106 proposed during 
the session.

Figure 2. Investigation of the collective mathematical prob-
lem arising from the conjecture of an even number 
divided by 2 resulting in an odd number. 



was the validation of the strategy that 46 is divisible by 2 
because both 4 and 6 are divisible by 2 that gave rise to the 
first collective mathematical problem. To solve it, explana-
tions, examples, and counterexamples were provided. An 
argumentation regarding the application of this strategy to 
the number 106 emerged, leading to the second collective 
mathematical problem. Various explanations and justifica-
tions were proposed to address it, during which different 
decompositions of 106 were suggested. This process 
prompted the formulation of a mathematical question, which 
became the third collective mathematical problem. Exam-
ples and justifications were presented to solve this problem, 
eventually leading to the formulation of a conjecture. The 
conjecture then became the focus of the fourth collective 
mathematical problem. In his work, Schoenfeld (2020) 
emphasizes that the importance of problem solving lies in 
the deployment of mathematical practices and mathematical 
ways of thinking. However, it appears that the deployment 
of mathematical practices also generates new mathematical 
problems to solve—collective mathematical problems that 
inherently emerge from such activity. A kind of ‘snowball 
effect’ seems to occur. Mathematical practices are put forth 
by the collective in response to an initial task. These prac-
tices, in turn, stimulate the use of additional mathematical 
practices by the collective. Their deployment can generate 
uncertainties for the collective, prompting it to resolve them. 
For instance, the validity of a strategy might be questioned 
and investigated; an explanation perceived as imprecise 
might generate further inquiries; an error might occur, 
prompting the collective to make sense of it; a conjecture 
might be formulated, prompting exploration of its domain of 
validity; or examples and counterexamples might be pro-
posed, resulting in mathematical argumentation. The 
mathematical practices enacted in the classroom can thus 
generate moments of uncertainty, and when the collective 
engages in addressing these uncertainties, collective mathe-
matical problems emerge. In turn, the resolution of these 
collective mathematical problems calls for the enactment of 
new mathematical practices. And so the cycle continues… 
This suggests a mutual influence loop between the deploy-
ment of mathematical practices and the emergence of 
collective mathematical problems, unfolding through and 
driven by the inter-actions that take place in the classroom as 
the collective works to solve an initial mathematical task. 
This recalls the work of Grenier and Payan (2002), who dis-
cuss the never-ending nature of exploiting a mathematical 
task, as new mathematical problems can always be formu-
lated. However, while such problem formulation is often 
done either before the solving of the task, by modifying var-
ious didactic variables (e.g., Zhang et al., 2022), or after its 
resolution, as in Polya’s (1945) well known Looking Back 
strategy, the example presented here highlights that mathe-
matical problems can also arise contingently, that is, during 
the collective mathematical activity occurring in the class-
room—emerging naturally and inherently from the activity 
itself. The concept of collective mathematical problems aims 
to shift our focus toward the mathematical activity as it 
unfolds in the classroom, drawing attention to the mathemat-
ical problems experienced by the collective.

Final reflection on ‘good’ mathematical  
problems 
While the notion of a mathematical problem often serves as a 
point of departure, several studies in problem solving 
research also focus on what makes a problem a ‘good’ prob-
lem. Liljedahl (2020) argues that good mathematical 
problems are those in which students initially get stuck, but 
which lead them to think, to experiment, to try things out, and 
ultimately to mobilize their knowledge in original ways in 
order to break through the impasse. For Schoenfeld (2020), a 
good problem fosters mathematical investigation—that is, it 
allows for the formulation of conjectures, the establishment 
of connections, abstraction, generalization, and the genera-
tion of new problems to be solved. While research in this 
field often focuses on the initial task proposed to students as 
a means of triggering rich and authentic mathematical activ-
ity, one question that arises is whether collective 
mathematical problems—emerging from in situ mathemati-
cal activity—may also be considered good mathematical 
problems. Good problems may certainly exhibit various char-
acteristics, depending on their formulation and design, but it 
seems that such characteristics may also arise within the 
classroom over the course of activity. In this context, future 
research could seek to better understand whether the collec-
tive resolution of routine problems (i.e., exercises), which 
gives rise to such emergent collective mathematical prob-
lems, can lead to mathematical activity similar to that which 
is typically elicited by initially formulated good problems. 

Such research could help challenge the widely held 
dichotomy between routine problems and good mathemati-
cal problems, by illustrating the richness of mathematical 
activity that may emerge when collective mathematical 
problems are recognized and investigated within the class-
room. Given that most of the teaching material used by 
teachers consists largely of routine problems (Beghetto, 
2017), such research may help to bridge the gap that some-
times separates the scientific and practical communities. 
However, further research exploring the conditions under 
which collective mathematical problems emerge and are 
investigated—through an analysis of teaching practices that 
foster, support, or make use of them, as well as the resulting 
mathematical activity among students—would be valuable 
for better understanding the scope and limitations of this 
notion of collective mathematical problems in classroom 
teaching. Moreover, because collective mathematical prob-
lems are inherently tied to the ongoing activity, it is 
reasonable to consider that they may carry a certain signifi-
cance for the collective that seeks to resolve them. This 
raises a central question: For whom are these problems good 
mathematical problems? To address this question, it may be 
helpful to consider different perspectives: for instance, that 
of the researcher, who seeks to observe students engaging in 
mathematical activity akin to that of mathematicians; that of 
the teacher, who aims to support students in learning specific 
content; or that of the students themselves, as they encounter 
and formulate problems through the mathematical activity 
unfolding in the classroom. In this sense, this article high-
lights the complexity of the notion of (good) mathematical 
problems and proposes to broaden it by paying closer atten-
tion to what unfolds and emerges through classroom 
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activity—emphasizing the emergent and contingent nature 
of problems and the situated, socially constructed nature of 
mathematical activity in the classroom (Cobb, Perlwitz & 
Underwood, 1994), while also inviting consideration of the 
multiple perspectives involved in defining what constitutes 
a good problem for the classroom. 
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Notes 
[1] This session comes from a Teaching Experiment conducted as part of a 
research project on problem solving (see Proulx, 2018, for more details). 
[2] In English: A problem is generally defined as an initial situation with a 
goal to achieve, requiring the subject to devise a series of actions or opera-
tions to reach that goal. A problem only exists within a subject/situation 
relationship, where the solution is not immediately available but is possible 
to construct. This also means that what constitutes a problem for one subject 
may not be a problem for another, depending on their level of intellectual 
development, for example. (free translation)   
[3] Obviously, the teacher could, quite often, prevent these uncertainties 
from unfolding in the classroom by immediately offering a way to resolve 
them each time they begin to emerge. The teaching context thus plays an 
important role in the emergence of collective mathematical problems in the 
classroom. This role of the teacher, which would warrant more in-depth 
investigation, nevertheless lies beyond the scope of the present article. 
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