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The curriculum (DfEE, 2001) for eleven-year old students in
the UK, currently adopted by most schools, includes solving
linear equations with the unknown on one side only before
moving onto those with the unknown on both sides in later
years. The suggestion in the Framework for Teaching Math-
ematics is that the former kind are solved:

by using inverse operations (p. 122)

and the latter by:

beginning to understand that an equation can be
thought of as a balance where, provided the same oper-
ation is performed on both sides, the resulting equation
remains true. (p. 125) 

Implicit in these recommendations is the belief that there is
a significant shift in the level of complexity when moving
from one kind of equation to the other, and hence a need for
a different set of solution strategies. The following class-
room exchange (see Figure 1), recently observed by the
authors, would appear to substantiate this.

This shift in complexity is well documented and is some-
times referred to as the “didactic cut” (Filloy and Rojano,
1985, 1989; Herscovics and Linchevski, 1991, 1996). The
basis for this “cut” would seem to be the interpretation of the
equals sign as a “do something signal” (Behr et al., 1976;
Kieran, 1981) rather than as suggesting the “quantitative
sameness” (Boulton-Lewis et al., 1997; Saenz-Ludlow and
Waldgrave, 1998) of the two sides. That is, the expression
on the left-hand side of the equation is seen as a process,
and consequently the right-hand side must show the (arith-
metic) result of this process. So, in the above example, 3x +
2 = 11 can be solved by inverting or ‘undoing’ the given
operations and there is no requirement to work directly on or

with the unknown. To solve 3x + 2 = 5x – 9, however, ‘undo-
ing’ is not enough and it is now required to operate directly
on the unknown quantity. Sfard (1991) describes this dis-
tinction as one between conceiving of the algebraic symbols
operationally (as processes) or structurally (as objects) and
suggests “a deep ontological gap” (p. 4, emphasis in origi-
nal) between the two.

While many teachers grapple with bridging this gap and
attaching meaning to such equations and their solution
strategies, for example, through the use of the balance
metaphor (see Vlassis, 2002 for a recent evaluation of this),
evidence suggests that for many students solving equations
remains a matter of learning rules and performing blind
manipulations. At best, they develop “cover stories” (Pimm,
1995, p. 89), such as “take it over the other side and change
its sign”, to deal with this.

Similarly, school textbooks struggle with the balance
between developing algebraic understanding and training
algebraic skills (Wijers, 2001). 

In this article we describe an attempt to encourage stu-
dents to exploit an already familiar image, the number line,
in order to address the difficulties described above. What
should also be stressed, however, is that we do not consider
what follows to be a new method for solving equations, nor
a new form of representation. It is simply the exploitation
of an image with which the students are already comfortable,
to support their developing understandings of linear equa-
tions through access to the solution strategies available. This
is a crucial distinction and will be referred to a number of
times during the course of the article.

Beginnings
A couple of years ago we attended a seminar on the ‘model’
approach used in Singaporean schools to help primary stu-
dents solve ‘higher-order’ algebraic problems (Fong and
Chong, 1995). Figure 2 shows an example of this.
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Figure 1: Classroom exchange discussing linear equations.

Figure 2: The use of the Singaporean model approach to solve
a problem (Fong and Chong, 1995, p. 34).



42

As we attempted to solve more complex problems we met
with the difficulty of needing to ‘drop’ our existing algebraic
knowledge if we were to explore this new approach fully.
At this stage, some people in the seminar group began to feel
more comfortable using an empty number line instead of a
series of blocks (see Figure 3 for the new representation).

From here, it seemed a relatively small step to begin repre-
senting equations such as:

3x + 12 = 5x + 6 

on a double number line (see Figure 4).

As this happened, we were struck by the immediacy (for
us) of seeing 2x + 6 = 12, and decided to present this repre-
sentation to a group of teachers as a topic for research. The
research group consisted of about ten mathematics teachers
drawn from a number of schools local to the university
where we work as teacher educators, who were already
meeting on a regular basis to discuss their classroom prac-
tice. These meetings include reflection on relevant academic
writing, as well as discussion on ways of working within
the classroom. This article describes the initial work of the
group in relation to this topic.

Each teacher was asked to introduce these ideas in a similar
way and to keep notes on the lessons and retain copies of the
students’ work. Some lessons were also videotaped as a fur-
ther means of gathering data. The results reported here are the
amalgamated outcomes of the experiences in all the classrooms.

Early lessons
Familiarity with the number line seemed to be important for
students. So, when the idea was initially taken into classrooms,
teachers were asked to do some preparatory work (often a
series of mental starters) on using the number line to solve
addition and subtraction problems. For example, the problem
153 – 68 might be represented as shown in Figures 5 or 6.

Although not initially apparent, it became useful later on
for students to be willing to drop the notion of jumps on the
line being representative of actual sizes. Early on it was
noticeable that jumps of, say, twenty were regularly drawn
twice the size of jumps of size ten. However, students even-
tually seemed happy to draw diagrams such as Figure 7.

This would seem to be an early indication that pupils were
beginning to make the transition from seeing the number
line jumps as a ‘model of’ something to a ‘model for’ that
thing, a transition originally identified by Streefland (1991).
Although this shift may not necessarily be permanent, as dis-
cussed later in this article, it is crucial if students are to move
successfully from informal methods to more formal mathe-
matical knowledge (Gravemeijer 1990).

Following these starter activities, the teachers introduced
equations simply by putting 3x + 4 = 19 on the board and
then (slowly) drawing the representation in Figure 8.

Students were initially asked to tell the teacher what they
could see. One immediate issue was the number of familiar
difficulties that this question helped to highlight. In particu-
lar, a number of pupils either stated that all the xs were the
same, or asked if this had to be the case. Other responses
included “3 times a number plus four is equal to nineteen”,
“3 xs must be fifteen”, and “x is five”. The latter was a very
common response, which, although obviously useful, actu-
ally worked against us at times, as will become clearer
below. 

Figure 3: Using a number line to solve the problem.

Figure 4: Using the number line to solve equations with the
unknown on both sides.

Figure 7: Moving from seeing jumps as a ‘model of’ some-
thing to a ‘model for’.

Figure 8: Representation for 3x + 4 = 19.

Figure 6: Addition jumps to solve 153 – 68. 

Figure 5: Subtraction jumps to solve 153 – 68. Figure 9: Representation for 3x + 14 = 5x + 6.
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The apparent accessibility of this model allowed classes
to move quite quickly into problems involving the unknown
on both sides and as early as the second lesson the teachers
introduced the problem in Figure 9 to students who were
again challenged to say what they could see.

It was noticeable in one classroom that some students
wrote 3x + 14 = and 5x + 6 =, a response similar in many
ways to the student comment at the beginning of this article:

3 times a number plus 2 makes something, but I don’t
know what. Don’t understand what the five x minus 9 is
doing there.

A response like this could also indicate that the student is
perhaps suggesting a search for two different values of x to
satisfy the equation (see Sfard and Linchevski, 1994). Many
other students, however, clearly did recognise the equality
inherent in the drawing, sometimes referring to “equal
length”. What was also noticeable was the number of stu-
dents who identified 2x + 6 = 14 as being something they
could see, along with many others who went straight to “x
is 4”. This latter statement was checked by using the jumps
along the line, which again seemed accessible to the vast
majority of students. It was also noticeable even at this stage
that a number of students, when asked for amplification of
their ideas, were beginning to cover up or cross out xs so as
to simplify the problem. It was quite common to see repre-
sentations such as that in Figure 10 in students’ exercise
books.

Statements such as 2x + 6 = 14 and, when pushed by teach-
ers, x + 14 = 3x + 6 were particularly interesting as these
were seen as encouraging signs of students starting to see the
algebraic terms as objects instead of merely processes (see,
for example, Crowley et al. (1994) for a discussion about the
importance of this distinction). We will come back to this
point in more detail later in the article.

The apparent ‘accessibility’ for many students also cre-
ated dangers, however, and when they first taught with the
images, many teachers reported feeling that they were in fact
moving too quickly onto more sophisticated problems.
When teaching the topic a second time, teachers tried to
ensure that much more discussion focused on the equiva-
lence of the two sides of the line, with students’ attention
being drawn to this equivalence rather than to the solution of
the equations. This proved to be a tension in some class-
rooms, with students showing reluctance to engage with
issues once they knew “the answer” to the equation. This,
of course, is nothing new and is even more prevalent when
trying to introduce some students to more sophisticated solu-
tion strategies (e.g. balancing) to equations that for many of
them can be solved mentally (with most ‘arithmetic equa-
tions’ coming into this category). 

Mathematical development
Seeing eleven-year-old students of around average ability
‘solving’ equations such as:

3x + 17 = 8x + 7, 

and being able to explain what they were doing, goes some
way to confirming the initial accessibility of this model, but
little else. We stress again the importance of regarding the
model as a means of granting access to solution strategies,
and not as a strategy in its own right. At this stage of the
development it would be too easy (and unfortunately too
common) to either stay with many similar examples simply
to practise the ‘method’, or to drop the model and move onto
‘harder equations’. The aim, however, is neither of these. It
is to use the ideas that the students have developed, and to
encourage them to formalise these ideas. 

The belief that students can do this, coupled with the con-
viction that we are not here teaching a new method, but
simply allowing students to explore possible strategies, is
crucial. This has significant implications for how teachers
proceed from this point.  We believe that Treffers’s (1987)
distinction between horizontal and vertical mathematisation
is important here, and in this case we interpret ‘horizontal’
as being the ability to represent an equation on a number line
and solve it, and ‘vertical’ as the development and forma-
lisation of solution strategies that will ultimately be
generalisable. The questions asked of students were now of
paramount importance, and teachers who in earlier lessons
had managed to divert students’ attention away from the
actual solution now experienced more success. For example,
with reference to:

3x + 14 = 5x + 6, 

a common approach was to ask students for a number of
statements that they knew to be true, and to justify these.
Some students came up with x + 1 = 5 “because we know x
is 4”, and when this happened a lot, some teachers found it
necessary to resort to equations where the solution was a
non-integer, in order to be able to proceed.

The next stage was to give students a series of statements,
and ask them to justify whether or not they could be deduced
from the original equation. These were of the form (using
3x + 14 = 5x + 6 as the original equation)

14 + 3x = 5x + 6

3x + 20 = 5x+ 12

x + 14 = 3x + 6 

5x + 14 = 7x + 6 and more challengingly,

6x + 28 = 10x + 12 and, importantly,

14 = 8x + 6, 

6x +14 = 10x + 6 etc.

Classrooms were soon full of many equivalent expressions,
with students being challenged to find ‘different’ ones and
always to justify these. Such ‘free productions’ revealed a lot
about the kinds of strategies currently being adopted by the

Figure 10: Crossing out xs to simplify the problem.



students (see Streefland, 1990, 1991) for further discussion
of the value of asking students to produce such work). While
students may at this stage have been mainly engaged with
examining the procedural operations associated with solving
equations, their justifications invariably hinted at more
structural aspects. This, in our experience, is quite rare, and
is discussed further in the conclusion to this article. 

For example, adding 2x to each side was dealt with quite
confidently, with students regularly making comments such
as “as long as you add the same number of xs to both sides
the lengths (on the line) will still be the same”. Also, the sym-
metrical properties of equality appeared to be self evident to
many students. In fact it was rare at this stage to find students
disputing or having difficulty with the notion of equality.

From such experiences discussion was common about
strategies that were ‘allowed’. It also became clear that stu-
dents were now beginning to generate such strategies by
referring to the equation rather than to the number line (the
algebraic form of each equation was always present along
with the model in all lessons). Students beginning to act on
the symbols as objects was clearly a major step, though it
was still important that teachers regularly checked that stu-
dents could use the original image to continue to justify their
strategies. Indeed, it was central to the entire investigation
that the representation should remain available throughout,
and that pupils could refer back to it at any time. 

Another strategy adopted at this time was to ask questions
of the form:

48x + 24 = 27x + 87. 

This form of equation provided valuable information con-
cerning the amount of progress being made by students.
Responses varied from those who wanted to draw 48 indi-
vidual jumps of x, through some who represented 48 as four
tens and an eight, to those who (impressively) drew the rep-
resentation in Figure 11. 

It was also noticeable, however, that many students asked if
they had to draw a number line, claiming that they “could
see” that 21x + 24 = 87. When pushed further, some stated
that they “imagined” the number line “in their heads”, whilst
others were simply operating on the equation.

We believe that the vast majority of the above work is
analogous to the idea of ‘doing the same to both sides’, and
some students began to articulate their strategies in these
terms, sometimes referring to “two sides of the line”, and
sometimes to “two sides of the equation”. The significance
here is that the students are developing their own procedures
and explanations for them, rather than just being told by a
teacher to use mechanical procedures. They have an under-
lying image to return to if they need to be reassured or need
to re-evaluate a particular strategy. The final outcome may

be the same, but the level of understanding is very differ-
ent. This idea of learning mathematics through proceeding
from your own informal mathematical constructions to more
formal mathematics has also been very successfully used
within the Realistic Mathematics Education (RME)
approach developed in The Netherlands (see Treffers, 1991).

Using negative numbers
The issue of how and when to introduce negative numbers is
one that is being looked at in future research, but the actual
representation of equations including them is interesting. In
the time that this model has been used in the classrooms, a
number of possible representations have emerged. Four rep-
resentations for the equation 2x – 3 = 5 are discussed below.

1. A lot of students initially wanted to use the notation in
Figure 12. It was discounted as not following the accepted
convention on the number line, although it does allow for
some equations to be solved. Having done early number line
work for addition and subtraction questions did appear to
help students here.

2. and  3. Figures 13 and 14 were used by many students,
and seem to reflect how most schools represent subtraction
on a number line. 

They also continue to allow students access to solution
strategies. For example,

3x + 7 = 5x – 12.

is now seen as shown in Figure 15, from which similar ques-
tions to before can be posed, or a ‘solution’ can be found
through 2x – 12 = 7, or by seeing 2x = 19 directly.
Similarly, 13 – 2x = x +1 can be represented as shown in Fig-
ure 16.
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Figure 11: Students’ representation of 48x + 24 = 27x + 87.

Figure 12: First representation for 2x – 3 = 5.

Figure 13: Second representation for 2x – 3 = 5.

Figure 14: Third representation for 2x – 3 = 5.
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And 2x – 7 = 5x – 12 as shown in Figure 17.

One possible obstacle with this representation was the re-
emergence of the issue of the size of jumps on the line. For
example, in the question above, students were worried about
“how far back to go” for – 7, and whether or not a jump of
7 was greater or larger than a jump of x. Interestingly, this
was a concern even for some more high-achieving students
who, in previous questions, had clearly come to view the
model simply as a representation ‘for’ the equation. This
apparently retrograde step may be seen as a particular exam-
ple of a phenomenon detected in a similar situation by Filloy
and Rojano (1989) and described as “[t]he temporary loss
of previous abilities, coupled with behaviours fixated on
the models” (p. 21). This obstacle is clearly not insurmount-
able, however, and the discussion that it generates can be
useful in itself.

4. The first time Figure 18 was seen was when a student
drew it as part of a homework. The teacher was initially
unsure whether to accept it or not, but was persuaded par-
tially because many other students immediately wanted to
adopt it.

So, for example, this representation would yield 3x + 7 =
5x –12 as shown in Figure 19.

And 13 – 2x = x +1 would be represented as shown in Figure 20.

Interestingly, in the school where this first emerged, students
now began describing other transformations of the equations
that had not been considered before. For example, 13 – 2x
= x + 1 is clearly equivalent to 13 = x + 1 + 2x and suddenly
the image of ‘moving terms over the equals sign’ begins to
emerge.

As this happened, it felt important to return to previous
questions. The representation of 3x + 14 = 5x + 6 shown in
Figure 21 also yielded expressions such as:

3x + 14 – 6 = 5x

3x + 14 – 6 – 2x = 3x

5x + 6 – 14 – 3x = 0.

These explorations led to a lot of discussion about how what
was now happening compared to the notion of ‘both sides’
that had been around in previous lessons.

Results and limitations of the model 
Some of our students have now taken in-school tests and
also the national tests required at ages fourteen and sixteen.
Initial results are encouraging. Certainly the image of the
line seems to be around for quite a lot of students, and we
regularly saw over 50% of a class drawing a diagram to help
to solve an equation. This does feel different to our experi-
ence of working with other images such as the balance,

Figure 15: Representation of an equation with an unknown on
both sides and a negative number.

Figure 16: Representation for 13 – 2x = x + 1.

Figure 17: Representation for 2x – 7 = 5x – 12.

Figure 18: Fourth representation for 2x – 3 = 5.

Figure 19: Representation for 3x + 7 = 5x – 12.

Figure 20: Representation for 13 – 2x = x + 1.

Figure 21: Returning to an earlier representation, 3x +14 =
5x + 6.
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where students would rarely evoke the model once it had
been ‘dropped’ (see Boulton-Lewis et al., 1997 for further
evidence of this). 

It is also true that the teachers appeared to stay with the
number line much longer than might usually be the case,
attempting to create examples that encouraged students to
move away from the line, but allowing others to remain with
it if they so wished. Many of the teachers, when questioned
on this issue, cited the accessibility and sustainability of the
model as the reason for this change in approach.

The model seems to allow quite natural movement to
dealing with different forms of an equation. For example, 1
+ 2x = 5 seemed as accessible as 2x + 1 = 5 (and 5 = 2x + 1),
3x + 2 = 5x was seen as the same kind of equation as, say, 3x
+ 2 = 5x + 1, and when this was written as 2 + 3x = 5x + 1,
students appeared comfortable with having to ‘rearrange’ the
equation for drawing purposes. This contrasts with some
other models where a rearrangement, or the move to nega-
tive coefficients, causes severe obstacles for learners or even
the complete breakdown of the model (Filloy and Rojano,
1989). In this respect, it may be that the number line can
offer greater insight into the properties of equality (for
example symmetry and transitivity), and hence create valu-
able opportunities to involve students in discussing such
properties. We will return to this point in our conclusion.

We consider the strength of this model to be the fact that it
gives access to possible solution strategies and gives stu-
dents some means of deciding which of these are viable. It
may even begin to attach some meaning to what for many
students were previously meaningless procedures. It does
not model all equations successfully, nor is it intended to do
so. For example, when x has a negative solution in an equa-
tion such as 3x + 10 = 5, we have as possibilities the
representations shown in Figure 22.
The first of these feels unsatisfactory mathematically; the
second is likely to prove a difficult extension of the idea for
many students. Some teachers are still working on this, but
while it may be of academic interest, it is not the crucial
issue. The contention of this article is that, through using
the number line model, by the time students need to be

solving equations with negative solutions, they will have
developed suitable strategies for dealing with all simple
equations. If they are still totally reliant on the line, one
could argue that they are not ready to move onto such
equations.

Discussion
What we have described here are some early trials in a small
number of schools. We have restricted ourselves to a brief
description of the kind of strategies that teachers used, and
initial student responses to these strategies. We will be work-
ing on more detailed case studies of student learning in the
future.

However, students in the initial trials appeared to enjoy
working with equations in this way, and certainly made
progress. Some more able students could very quickly begin
to develop effective strategies for solving a whole range of
equations, and were clearly beginning to formulate the more
abstract procedures necessary for solving higher-level prob-
lems. Perhaps, most striking of all, was the access given to
middle-and lower-achieving students who, experience sug-
gests, would usually struggle with such problems.

One feature of our work was the way that teachers could
relate to what others were saying because of the similarity of
their experiences and outcomes in different classrooms and
different schools. This allowed for much productive discus-
sion whenever our teachers met, and undoubtedly helped
them to reflect on and refine their teaching strategies. This
collective approach to classroom research was a valuable
aspect of our work, and adds weight to our contention that
this approach to the teaching of equations can be useful in a
wide range of classrooms.   

The main feature of the model that came out of all our
classrooms, however, was its initial accessibility to students,
and in this respect the model may serve to limit the impact of
the ‘didactic cut’ referred to earlier. Sfard (1991) stressed the
need for a lengthy period of experience before procedural
conceptions could be transformed into structural ones. We
tentatively suggest that when using the number line, students
may be regularly interchanging between the two. For exam-
ple, when a student draws a number line representation of,
say, 3x + 14 = 5x + 6, it is likely that this represents an oper-
ational (‘procedural’) view. When, however, they describe
seeing that 14 = 2x + 6, or are asked to justify why 7x + 14
= 9x + 6, then we believe this to be working within the struc-
tural domain. We also see comfort with ‘different’ forms of
the same equation as further evidence of students beginning
to see algebraic statements as objects as well as processes.
For example, the move from 2x + 1 = 5 to 1 + 2x = 5 repre-
sents an increasing complexity and sometimes a serious
difficulty for students. The flexibility to be able to interpret
2x + 1 as both a process (to be evaluated) and an object (to
be manipulated) is crucial for algebraic progress and seemed
to be developing in our students. 

However, the role of the teacher and the questions they
pose are crucial here, and this, in many ways, is the crux of
the matter. We do like the number line for both its accessi-
bility and its sustainability, and for the fact that, for many
of our students it is an existing, familiar image. In this
respect it may serve a similar purpose to contexts and mod-

Figure 22: Representations for when x has a negative solution
in an equation, in this case, 3x + 10 = 5.



47

els used in the RME approach which not only provide ini-
tial access into the mathematics but also support
development through the mathematics (Gravemeijer, 1990).
To think about being in favour or against this approach,
however, or to begin to compare its relative merits to other
models would be to miss the point. There are simply too
many variables to attempt such a comparison and there is
no doubt that, in unskilled hands, the number line model
remains firmly in the ‘cute new ideas’ file. What we are
really interested in are the strategies that may be employed
to help students to become more effective algebraic thinkers,
and the role that the number line may play in this. If the
number line has a role it is likely to be because the accessi-
bility of this model allows equations with the unknown on
both sides to be introduced much earlier than is the case in
our current curriculum structure. In turn there will be more
time for the development of important concepts and skills
without the pressure of frameworks and tests that so often
force upon teachers a fixed endpoint (often an algorithm or
meaningless procedure). Beginning with eleven-year-old
students (and it would seem possible to use the model even
before this) gives students of average achievement at least
three years to work towards more formal, abstract methods,
and to attach meaning to standard solution strategies.
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