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This article began out of discussions between the first two
authors on their linked research and development work in
South Africa geared towards building awareness of structure
in early number, and the latter two authors’ extensive writing
on mathematical structure and what it means to develop
structural awareness, often drawing on this in designing
tasks and pedagogic prompts. In these discussions, we found
we were frequently talking at cross-purposes, with each
of us using different combinations of terms for similar
phenomena and using the word structure to refer to substan-
tively different phenomena. It was at this point that we
turned to the literature and were comforted to find ourselves
in good company in terms of our confusions. The phenom-
ena in Figures 1-3 provide useful contexts for illustrating
the kinds of things we were struggling with.

We are interested in these phenomena in relation to differ-
ences in the nature and extent of awareness of mathematical
structure. But claiming interest in “differences in the nature
and extent of awareness of structure” presumes that we
know what we mean by the term structure. This is the ques-
tion that guides this article.

In response to the question
“What is the same and what is different about these two number
sentences: 3x2=06 6+3=2 7

learners are heard to say:
1: “Both number sentences have a three, a two and a six in them”
2: “If I give two sweets each to three people, then I could also say
that six sweets shared between three people would give each person
two sweets”
3: “I know I can reverse times by three with divide by three”

Figure 1. Phenomenon A.

England assesses learners in mathematics at the end of primary school (11-
year-olds). Questions include calculations such as:
725 +29 and 1320 + 12
(both set out on squared paper as ‘long division’),
but also questions such as:
“Given that 5542 + 17 = 326, can you use this fact to show how to
work out 326 x 18?”
Performance on the former two calculations is far higher than on the latter
question.

Figure 2. Phenomenon B.

Two responses are offered for a division

number sentence matching the diagram: ¢ [ ] (Y °
11+2=4rem3 o 1)
11+4=2rem3 e o ®

The teacher rejects the first offer on the basis of declaring that the
remainder cannot be larger than the divisor, and accepts the second answer.

Figure 3. Phenomenon C.

While structure has been written about widely in mathe-
matics education, it remains a notoriously difficult word to
pin down. Recently, Kieran (2018) has noted that:

Structure is often treated within the mathematics edu-
cation community as if it were tantamount to an
undefined term,; it is further assumed that there is uni-
versal agreement on its meaning. (p. 80)

Part of the difficulty with pinning structure down is that
the term is frequently enmeshed within a set of terms that are
sometimes juxtaposed but seen as distinct, and at other
times, seen as synonymous. Terms in the ‘mix’ that particu-
larly interest us are: structure, relationships, generality/
generalisation and properties.

In this article, we use the examples above as a fertile
ground for looking at such terms given the rich networks of
relationships between actions and properties that charac-
terise the multiplicative reasoning (MR) conceptual field
(Vergnaud, 1983). These MR phenomena provide a base for
illustrating what we mean when we talk about the term
structure and the ways in which it is linked to the other
terms. The literature base related to these terms is drawn
upon in order to understand key juxtapositions and distinc-
tions made between structure, relationships, generality/
generalisation and properties in different pieces of writing.
Through this engagement, we end up with a model that con-
nects the terms of interest to us and highlights their
distinctions. Building on this we introduce the notion of for-
matting actions [1] as central to creating, or recreating
through editing, structure.

Structure: an overview of the literature
Kieran’s comment above on structure as largely unde-
fined, and yet seen as a central feature of mathematics,
forms an important backdrop to this overview. In the same
writing, Kieran also notes a bias in the mathematics educa-
tion literature towards a focus on generalising that tends to
side-line attention to structure. But the lack of clarity about
the notion of structure may be part of the reason for this lack
of attention. For example, Mulligan, Vale and Stephens
(2009), in their introduction to a special issue on structure of
the Mathematics Education Research Journal, state that
awareness of structure is important for: “mathematical rep-
resentation, symbolisation, abstraction, generalisation and
proof” (p. 1), but leave unspecified what constitutes an
awareness of structure. While their formulation suggests
abstraction as an outcome of structural awareness, Warren
(2005) asserts, in somewhat the opposite direction, that
“abstracting patterns is the basis of structural knowledge”
(p- 305). Questions about the relationship between structure
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and abstraction are raised, but not resolved in this debate,
and what constitutes structure remains opaque.

For Kieran, structure arises from ‘structuring’ activity
which refers centrally to what she describes as decomposing
and recomposing moves in examples such as:

989=9x109+80r9 x110-1
30x* - 28x + 6 = (6x - 2)(5x - 3)

Such moves produce alternative ways of expressing par-
ticular arithmetical or algebraic entities. This resonates with
a comment John Mason made in our initial discussions of
this article, that, for him, the notion of structure has an archi-
tectural quality, a spatial organisation formed by specific
relationships that place some element or elements in partic-
ular configurations with another element or elements, rather
than in random arrangements. This metaphor further res-
onates with Dorfler’s (2016) description of how structure is
experienced in the use of diagrammatic representations:
“diagrammatic inscriptions have a structure consisting in a
specific spatial arrangement of and spatial relationships
among their parts and elements” (p. 25).

Across Kieran’s examples and Dérfler’s description, central
to the idea of structure is that it is underpinned by elements
arranged in some specific mathematically appropriate rela-
tionship to each other. For example, the elements 6, 8 and 48
can be ‘structured’ into a 6 x 8 = 48 arrangement, but not into
6 x 48 = 8. Thus, structure hinges on a mathematically appro-
priate relationship that underpins the spatial architecture, and
this represents, a first and useful clarification:

structure < mathematical relationship between elements

The first response in Phenomenon A (“Both number sen-
tences have a three, a two and a six in them”) with no
reference to the relationship, either between the quantities
within either of the number sentences, or between the multi-
plication and division sentences, points to an absence of
communication of an awareness of structure in this context.

But Kieran’s first example and Dérfler’s description are
dissimilar in the extent to which particular, or more general,
relationships are referenced. In Dorfler’s description, struc-
ture is a characteristic of the particular example being
worked with and is visible in elements arranged in some
mathematically valid relationship to each other. Battista
(1999) provides a similarly ‘local’ attention to relationships
in spatial contexts in his definition of spatial structure as
involving determinations about an object’s form:

It determines the object’s nature, shape, or composition by
identifying its spatial components, relating and combining
these components, and establishing interrelationships
between components and the new object. (p. 418)

This orientation to particular examples also links with
Mulligan & Mitchelmore’s (2009) coding for the extent of
structuring, or organising into a mathematical relationship,
in children’s responses across a range of tasks. Across these
descriptions, there is a local ‘organising’ that is central to
Freudenthal’s (1991) notion of ‘structuring’ as ‘emphasising
form’ (p. 10) in which phenomena are organised according
either to internal relations or to their relations to other phe-
nomena. Common to all these perspectives is the perceiving
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or arranging of elements—symbols or images—in some
particular organisation that serves to stress a mathematically
appropriate relationship according to the syntax of the sym-
bols or materials being worked with. This body of work
leads to a notion of structure based in noticing, or forming,
local relationships that are internal to a specific case,
although they may also apply across a larger class. We
describe these structures as emergent, based on a local rela-
tionship that arises, or is represented, in specific cases.

This literature contrasts with a second body of work in which
the notion of structure carries a much higher burden of proof.
Mason, Stephens and Watson (2009) incorporate the need for
awareness not merely of local relationships, but of general
properties, properties being defined as the implied behaviour
of, and internal relationships in, a named class of mathematical
objects, in their description of mathematical structure:

We take mathematical structure to mean the identifica-
tion of general properties which are instantiated in
particular situations as relationships between elements;
these elements can be mathematical objects like num-
bers and triangles, sets with functions between them,
relations on sets, even relations between relations in an
ongoing hierarchy. (p. 10)

In this formulation, structure continues to be described as
made visible in “relationships between elements”, but for
Mason et al., such relationships alone are insufficient as mark-
ers of mathematical structure. Instead, they require the
“identification of general properties” within a particular
instance of a relationship, suggesting a generalised awareness
that characterises, or pre-figures, working with the particular
case. Warren (2003) similarly emphasises attention to both rela-
tionships and mathematical properties (those characteristics
that are immutable within a class and/or define a class) within
her focus on mathematical structure in the context of arith-
metic, in order to support the transition to algebraic thinking:

In particular, mathematical structure is concerned with
the (i) relationships between quantities (for example,
are the quantities equivalent, is one less than or greater
than the other); (ii) group properties of operations (for
example, is the operation associative and/or commuta-
tive, do inverses and identities exist); (iii) relationships
between the operations (for example, does one opera-
tion distribute over the other); and (iv) relationships
across the quantities (for example, transitivity of equal-
ity and inequality). (pp. 123-124)

Freudenthal (1983) suggests a particularly high bar for the
term mathematical structure, using it to refer in totality to the
overall network of basic and derived properties and actions
that can be associated with an initial relationship like a x b = c.

The stipulation that mathematical structure involves atten-
tion to specific relationships as instantiations of general
properties contrasts with the writing overviewed earlier
focused on what we called emergent structure. Emergent
structure expresses a focus on the nature of, or the organis-
ing into, a local mathematical relationship between
elements—where awareness of any general properties of a
class is yet to surface. In contrast, in the second body of writ-
ing, structure has a general flavour, with focus on the



properties of relationships within some class of examples.
We distinguish the local nature of relationships that we noted
in ‘emergent’ structures from the general relationships that
underpin what we term as ‘mathematical’ structure. So, for
instance, there are general features of the multiplicative rela-
tionship that do not depend on particular examples (as
Freudenthal notes, and as seen in response 3 in Phenomenon
A: “I know I can reverse times by three with divide by
three”). Kieren’s juxtaposition of two decompositions of 989
as 9 x 109 + 8 and 9 x 110 - 1 is of interest here. For some,
these two decompositions may be interpreted as two emer-
gent structures—two ways of breaking down 989 in relation
to a multiple of 9. However, the selection of a relatively
large number (989) in relation to 9 and the juxtaposition of
the multiple of 9 just below 989 and the multiple of 9 just
above 989, with their associated remainders, points to possi-
bilities for seeing a range of more general ideas—that all
numbers lie between two consecutive multiples of a given
factor, and that—in the case of 9 as the factor, a number
being n above the preceding multiple of 9 also means being
(9 - n) below the next multiple of 9. Creating or noticing
some of these more general relationships indicates moves
into the terrain of mathematical structure. A similar distinc-
tion marks responses 2 and 3 in Phenomenon A—the
statement “I know I can reverse times by three with divide
by three” is offered in general, rather than the particular
terms seen in response B: “If I give two sweets each to three
people, then I could also say that six sweets shared between
three people would give each person two sweets”.

This leads to a second clarification of the notion of struc-
ture: distinguishing the formatting of elements into a local,
or emergent relationship (creating an emergent structure)
from the formatting of elements into, or on the basis of, a
more general relationship that is understood to hold across
some broader class of examples.

Emergent structure
(involving analyzing/forming/
seeing local relationships)
\S

Mathematical structure
(involving analyzing/forming/
seeing general relationships)

Empirically, Mason & Pimm (1984) have noted that
examples can be worked with as specific (‘the even number
6’), the generic (‘an even number like 6”), and the general
(‘any even number’). This points to the importance of listen-
ing for the extent of generality in language as one route to
exploring the basis of offers in emergent or mathematical
structure. While formatting elements into a relationship is
common across both emergent and mathematical structures,
we make the distinction that emergent structures arise in a
discourse of particularity, whilst mathematical structures
arise in a discourse of generic/general relationships, applic-
able within some class of examples.

Properties, in the formal sense, are brought into play in
Phenomenon C, where the first learner offer is rejected on
the basis of a convention that when dividing, the remainder
in division usually has to be non-negative and strictly less

than the divisor. There are openings here to consider rela-
tionships between grouping and sharing models of division,
as well as the range of reformatting possibilities that mark
processes of division by grouping, and lead to a final, singu-
lar format, as the conventional outcome:

11+2=1rem9=2rem7=3rem5=4rem3=5rem 1

All of these expressions have the form a+ b = c rem d
because they all satisfy the property that: a = bc + d where a
is the dividend, b the divisor, and d is a remainder (rather
than the remainder). These algebraic expressions are
general, and hence, they all give perspectives on the multi-
plicative mathematical structure of number.

But structure can also be in focus within task design and
within materials. The tasks set in Phenomenon B provide
useful contrasts here. The setting out on squared paper in tra-
ditional long division algorithm form of the first two
examples: 725 + 29 and 1320 + 12, directs attention towards
calculation, using an algorithm that can be completed with
an entire focus on ‘digits’ rather than on numerical relation-
ships within the dividend or between the dividend and
divisor. This ‘formatting’ of the problem-setting is particu-
larly interesting in the case of the 1320 dividend problem,
where 1320 can be re-formatted as 1200 + 120, rendering the
problem open to solving efficiently through awareness of
numerical relationships between this partitioning and 12 as
divisor. Davis’ (2014) advocacy of enhancing attention to
number by focusing more on its spatial form (or more accu-
rately from the vantage of re-formatting, forms) is apposite
here in terms of building attunement to flexible ways of
decomposing numbers for the purposes of the problem at
hand. In contrast, the final division task formulation
demands more direct attention to the inverse relationship
between multiplication and division in 5542 + 17 = 326, and
to comparing the outcomes of 326 x 18 and 326 x 17. The
lower response rates for this last task suggest more limited
awareness of structure alongside much higher levels of com-
putational fluency displayed on the other items.

Number relationships and form are similarly emphasised in
Wing’s (2009) descriptions of ‘structured’ materials as mate-
rials providing “representational affordances [that] emphasise
either number notation conventions (such as bead strings, aba-
cus and base-ten blocks) or number relations (such as
Cuisenaire and Numicon)” (p. 11). In contrast, cubes and
counters are described as unstructured materials, as no math-
ematical relation inheres in their design, though they may
become structured in use through formatting actions. It is also
worth noting the caveat that any ‘in-building’ of structure into
resources does not guarantee that the relevant structure will be
noticed or appropriated by the materials user.

This overview leads us into a summary and schematic
model that helps us to clarify our thinking about the notion
of structure in mathematics—presented in the next section.

Structure: a summary and a schematic model
We use the term ‘formatting’ to describe the highlighting of
a relationship between elements, whether through spatial
arrangement or other notational means. Formatting can be
applied to specific examples or to more general example
spaces. In the first case, formatting can give rise to an emer-
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gent formation, or noticing, of a relationship within a partic-
ular case. In the latter case, formatting can arise from an
anticipated structure based on previously encountered exam-
ples (that can be explicitly present or implicitly invoked),
that pre-figure and direct the seeing or forming of a relation-
ship between elements. Formatting for mathematical
structure, more generally, is formatting undertaken with
awareness that goes beyond the specific relationship that is
produced.

This summary discussion distinguishes structure in the
context of particular cases (emergent structure) from struc-
ture in the context of generic and general cases
(mathematical structure). Connecting these two strands from
the particular to the generic/general are generalising actions,
which, as Kieran points out, have already received attention
in the literature. Moves in the reverse direction are specialis-
ing actions.

This discussion leads to an exploratory clarification of
terms in Figure 4.

In this model, we stop short of Freudenthal’s (1983) high
bar requirement for the totality of the network of basic and
derived properties and actions in our formulation of mathe-
matical structure. Instead, we follow the more pedagogical
line that reflects our interests and view mathematical struc-
ture as coming increasingly into view as awareness of a
network of basic and derived general relationships expands
over time. In taking this line, we follow the approach taken
by Brown (2011) in her discussion of concepts as structures
that emerge and expand through experience across tasks that
afford different possibilities for noticing similarities and dis-
tinctions and the reasons that might underlie these patterns
of relationships.

The diagram provides a lens with which to look at phe-
nomena with attention to a difference between perceiving
relationships within particular (local) cases, which is the
beginning of apprehending and perhaps conjecturing an
emergent structure, and thinking about general relationships.
General relationships can be seen via generalising activity
across a class of examples, or through working with a partic-
ular case that is viewed as generic of the class.

Concluding comments and reflections
We conclude with a comment on the role of format and for-
matting as key pedagogic actions that accomplish a focus on
structure in mathematics teaching. Our prior work points to
the importance of patterns of variation and invariance in for-
mat in rendering format changes more accessible to learners.
Attention to format allows formatting/re-formatting to move
from a local relationship in an initial form to an awareness
and/or expression of the same relationship in a different pre-
sentation. Thinking about the domain of applicability of
these formats/re-formats similarly supports connections
between emergent structure and mathematical structure. An
example of how these considerations can inform practice, in
our chosen context of MR, can be found in what we have
come to call the Drakensberg Grid [2]. This grid presents
several formats of symbolic, iconic, graphical representa-
tions of multiplicative relationships. It also enables the user
to juxtapose these to produce formats for encountering some
of the structure of multiplication in the field of real number
(Mason, Watson, Askew & Venkat, 2018).

The commentary and clarification presented in this article
allows us to distinguish formatting moves from generalising
moves. Formatting can emphasise, intentionally or other-

Formatting actions
involving

analyzing/seeing local

relationships

Particular

cases

Generalizing/
specializing actions

Generic or

> Emergent
structure

Generalizing/
specializing actions

Mathematical

general cases

Formatting actions
involving

'L structure

analyzing/seeing
generic/general
relationships

Figure 4.  Clarifying terms and their links.
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wise, structural properties. Emergent structure arises through Kieran, C. (2018) Seeking, using, and expressing structure in numbers and
formatting by decomposing or recomposing particular nu.me'rlcal operations: A fundament.al path to dev;loplng earl?r alg.ebr.alc
exampICS' awareness of mathematical structure can arise thinking. In Kieran, C. (Ed.) Teaching and Learning Algebraic Thinking
through f(; rmatting by decomposing and recomposing gen- with 5- to 12-Year-Olds: The Global Evolution of an Emerging Field of

1 . facl lisi S Research and Practice, pp. 79-105. Dordrecht: Springer.
eral properties of a class. Generalising moves are required to Mason, J. & Pimm, D. (1984) Generic examples: seeing the general in the

appreciate mathematical structure and can be seen via work particular. Educational Studies in Mathematics 15(3), 277-289.
with generic or multiple examples. Mason, J., Stephens, M. & Watson, A. (2009) Appreciating mathematical
structure for all. Mathematics Education Research Journal 21(2), 10-32.

Notes Mason, J., Watson, A., Askew, M. & Venkat, H. (2018) Multiple formats for

[1] Not to be confused with Bruner’s formats of interaction discussed by multiplication. Mathematics Teaching 262, 21-22.

Anna Sierpinska in issue 17(2) or the formatting power of mathematics dis- Mulligan, J. & Mitchelmore, M. (2009) Awareness of pattern and structure

cussed by Borba and Skovsmose in issue 17(3). in early mathematical development. Mathematics Education Research

[2] See http://www.pmtheta.com/reasoning-about-numbers.html# Journal 21(2), 33-49.

Drakensberg Mulligan, J., Vale, C. & Stephens, M. (2009) Understanding and developing

structure—its importance for mathematics learning: Editorial. Mathe-
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