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The literature abounds in such phrases as ‘A is equiva-
lent to B,’ which, unless properly defined, are often 
meaningless or misleading (Burington, 1948, p. 1). 

We have come across an odd distinction in students’ reason-
ing about proportional situations. Consider the responses 
students might propose to isomorphic proportionality tasks 
shown in Figure 1. 

Task A is a version of the oft-studied Student/Teachers 
problem. Much of the research on this scenario has investi-
gated issues related to students’ attempts to devise the correct 
formula in Line 3. Instead, our discussion in this paper cen-
ters on three questions involving nuanced uses of 
equivalence that are representative of those asked by students 
we interact with [1]: 

In Line 1, given that these are isomorphic tasks, how 
can it be valid that ‘28 days = 1 lunar cycle’ but not 
valid that ‘28 students = 1 teacher’? 

How can it be that ‘28 students = 1 teacher’ is not valid, 
but reasoning with this equation leads to the correct 
answer in Line 2? 

Given that Line 1 might be abbreviated as 28D = L or 
28S = T, how are we to resolve the apparent contradic-
tion with D = 28L and S = 28T, the (correct) equations 
in Line 3? 

In this article, we answer these questions through the lens 
of a conceptual analysis (Thompson, 2002) that explicates 
three interpretations of equivalence, revealing more nuance 
pertaining to the notions of equivalence at play than might be 
expected. We use the key ideas that emerge to call attention to 
the value for both educators and students in explicitly attend-
ing to and facilitating reflection on these interpretations. 

Three interpretations of equivalence 
Some classic and insightful research on how students think 
about the equal sign distinguishes between students treating 
it as a connector between steps in a computational process 
(operational view) and as an indication that the objects it 
links are equivalent and are thus in some way the same (rela-
tional view) (e.g., Knuth, Stephens, McNeil & Alibali, 
2006). This fundamental distinction helps to explain why 
some students are able to correctly solve algebraic equations 
and develop a capacity for algebraic thinking while others 
experience considerable difficulties in their attempts to do 
so. To answer the questions we have posed, however, we 
argue that it is useful to further refine the notion of a rela-
tional view of the equal sign. 

We begin by explicating a common interpretation of equiv-
alence for two common algebraic objects: expressions that 
are numerical (no variables) and algebraic (may have a vari-
able [2]). Numerical expressions are equivalent when they 
have the same numerical value, and, similarly, algebraic 
expressions are equivalent when “for any admissible number 
that replaces [the variable], each of the expressions gives the 
same value” (Saldanha & Kieran, 2005, p. 955). Notice that 
both of these characterizations center on the numerical [3] 
value(s) of the relevant expressions. This is a common inter-
pretation of equivalence that is indispensable for productive 
algebraic reasoning–indeed, part of what makes algebraic 
manipulation so powerful is the realization that certain 
manipulations preserve the numerical value of the expression 
so that the expressions that are generated are interchangeable. 
Additionally, a numerical interpretation is key to what Iszák 
and Beckmann (2019) proposed as a coherent view of multi-
plication: the number of base units in one group times the 
number of groups equals the number of base units in the 
product (p. 91). We observe, however, that it has some limi-
tations (and thus by itself is insufficient) in measurement 
contexts. Vergnaud (1994), for example, pointed out that, 
“many ways of reasoning concern relationships between 
magnitudes or quantities, rather than pure numbers” (p. 45). 
Consider a task posed by Vergnaud (1983) himself: given that 
one cake costs 15 cents, you must determine how much 4 
cakes cost. He pointed out that, even though it might be clear 
that the answer is 60 cents (the numerical value of 4 · 15 cou-
pled with the relevant monetary unit), it might not be obvious 
“why 4 cakes × 15 cents yields cents and not cakes” (p. 129). 
Notice that this scenario centers on the fact that the numerical 

Figure 1. Possible responses to two isomorphic proportional-
ity tasks (solution lines numbered for convenience).



equality is indeed preserved but does not directly account for 
the structure of the underlying measurement scenario (the 
units of the answer). Our introductory examples illuminate 
another limitation of numerical equivalence in such contexts, 
but in a different way: the expressions in Task B, Line 1 are 
not numerically equivalent–after all, 28 is not equal to 1–
yet we would all agree that (1) 28 days is, in fact, equivalent 
to 1 lunar cycle, and (2) the reason involves the structure of 
the underlying measurement scenario. Our point here is not 
that a numerical interpretation of equivalence is undesir-
able–far from it–but simply that additional interpretations 
are needed to reason about measurement contexts. The liter-
ature appropriately supplies two others. 

A transformational (e.g., Solares & Kieran, 2013; Predi-
ger & Zwetzschler, 2013) interpretation of equivalence 
involves viewing the relationship between objects primarily 
in terms of the sequence of actions by which one can be 
changed into another using some set of acceptable properties. 
This can involve, for example, viewing an equation in terms 
of the operations and properties by which the expression on 
one side is changed into the expression on the other (what we 
will call expression to expression), or viewing the entire 
equation itself as an object to be operated on and changed 
(equation to equation). Transformational reasoning plays a 
critical role in algebra because it helps students “develop a 
sense of the actions needed in order to reach a desired alge-
braic form” (Harel, 2008, p. 15), which plays a key role in, 
for example, the equation solving algorithm. A key compo-
nent of transformational reasoning in measurement contexts 
centers on how one views the behavior of units under 
(expression to expression) transformations. Vergnaud (1983) 
detailed two such views that are particularly relevant for our 
purposes here. First, continuing the cakes scenario from 
above, one might attempt to resolve the apparent discrepancy 
in units by reasoning that, since 4 · 1 cake = 4 cakes, then the 
total cost is 4 · 15 cents = 60 cents. This scalar transformation 
actually preserves the units. Alternatively, one might reason 
that (4 cakes) · (15 cents per cake) = 60 cents. Here, the units 
of each factor are combined via multiplication to create a new 
kind of unit: the units of the cost of 1 cake is viewed as a quo-
tient of the original units in order to facilitate the 
transformation of ‘cakes’ into ‘cents’. This approach can be 
(and, in our experience, often is) regarded in terms of the can-
cellation of units–that is, 

Lastly, a descriptive (e.g., Prediger & Zwetzschler, 2013) 
interpretation of equivalence treats two objects as equivalent 
if they describe, represent, or model the same quantity or sit-
uation. Though descriptive equivalence has many possible 
uses, we use it here to explore measurements of the same 
magnitude with different units (Thompson, Carlson, Byerley 
& Hatfield, 2014). The magnitude of a quantity A is the size 
of that quantity measured with respect to a unit u–symboli-
cally, |A| = mu(A) · |u|, where |A| is the magnitude, mu(A) is the 
measure of A in unit u, and |u| is the magnitude of the unit. 
This characterization of magnitude is helpful for two reasons. 
First, it gives us language to distinguish and relate a magni-
tude (the amount of a quantity) and its measure relative to a 

given unit. This can be understood as a multiplicative com-
parison between the magnitude measured and the magnitude 
of the unit. Second, by decoupling magnitude and measure 
we can relate different measures of the same magnitude. 
Doing so “makes explicit the fact that the magnitude of a 
quantity is invariant with respect to a change of unit” 
(Thompson et al., 2014, p. 5). That is, a magnitude is the 
same regardless of the unit used to measure it. 

 
Using the three interpretations of equivalence 
to gain insight into Tasks A and B 
We now turn our attention to using these three interpreta-
tions to answer the three questions we posed above. We note 
that our intention is not to outline all possible insights 
afforded by these three interpretations but rather to use them 
as a lens through which to (1) provide a rational frame of 
reference for the responses of the (epistemic) students we 
described in the introduction, and (2) provide plausible 
answers to the associated questions we posed. 

Answering Questions 1 and 2 

We again note that a numerical interpretation affords little 
insight into Line 1 because 28 is not equal to 1. Reasoning 
descriptively, however, ‘28 days’ is immediately seen to be 
equivalent to ‘1 lunar cycle’ because it expresses one magni-
tude (the duration of one lunar cycle, |lunar cycle|) using the 
other (the duration of one day, |day|) as a unit, yielding | lunar 
cycle| = 28 · |day|). This interpretation is less clear, however, 
for the student-teacher scenario in Task B, as ‘student’ and 
‘teacher’ are not readily seen as compatible units with which 
to measure either each other or some other magnitude. This 
explains why ‘28 days = 1 lunar cycle’ is conventionally 
regarded as valid but ‘28 students = 1 teacher’ is not (Ques-
tion 1 above). 

We propose that it is enlightening–both pedagogically 
and mathematically–to instead express ‘28 students = 
1 teacher’ using a colon, indicating a proportional relation-
ship. Pedagogically, being clear and intentional about 
expressing certain proportional relationships with a colon 
and some with an equal sign calls attention to the fact that 
there is something to be distinguished. Mathematically, the 
ratio maintains the structure that is needed to answer the 
question at hand. Indeed, one reason these kinds of equations 
appear and persist is because some actions on equations are 
also valid transformations on a proportional pair. Similar to 
how transforming an equation by multiplying both of its 
sides by the same scalar will produce another true equation, 
multiplying both entries in a proportional pair (whether 
expressed as an equation or ratio) by the same scalar will pro-
duce another proportional pair maintaining the same ratio. 
This is an example of Vergnaud’s (1983) scalar transforma-
tion that preserves (rather than changes) units. For example, 
since 28 students : 1 teacher, then 37 · 28 students : 37 · 
1 teacher; one also achieves the same correct answer when 
starting from the premise that 28 students = 1 teacher. This is 
the key to our response to Question 2: the invalid equation 
‘28 students = 1 teacher’ can be used productively because it 
preserves the same proportional relationship when multi-
plicatively transformed. This transformation is appropriate 
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on equations like ‘28 days = 1 lunar cycle’ and ratios like 
‘28 students : 1 teacher’. Table 1 summarizes the insights about 
Line 1 afforded by the three interpretations of equivalence. 

Answering Question 3 

We focus our response to Question 3 on Task B. We first 
note that the equation ‘D = 28L’ in Line 3 can be easily 
interpreted from the numerical perspective: if you consider 
any corresponding number of days (D) and number of lunar 
cycles (L) and substitute them into this equation, both sides 
of the equation will be numerically equal. This interpretation 
could also underlie the reasoning in Line 2: as the number of 
lunar cycles times 28 is the same as the number of days, then 
the number of days in 37 lunar cycles is 37 · 28 days. How-
ever, as Line 1 did not immediately lend itself to a 
meaningful numerical interpretation, we find it useful to 
consult the other two interpretations to identify coherence 
between Lines 1 and 3. 

Recall our descriptive interpretation of Line 1: the duration 
of one lunar cycle is 28 times as long as the duration of one 
day, or |lunar cycle| = 28 · |day|. From this perspective it is 
easy to see that in Line 1 the letters L and D are abbreviations 
representing the magnitudes |lunar cycle| and |day|. More gen-
erally, in Line 3 L and D are variables representing the number 
of lunar cycles and the number of days. Thus, measuring a 
more general duration of time (denoted by |t|) using the dura-
tion of one day as a unit involves iterating by the number of 
days–that is, |t| = D · |day|. Measuring that same duration 
with the duration of one lunar cycle as a unit will yield a mea-
surement of L–that is, |t| = L · | lunar cycle|. Thus, D and L 
are both the results of a multiplicative comparison (Thompson 
et al., 2014) of |t| to |day| and |lunar cycle|. This shows how Line 3 
can also be understood descriptively: D · |day| and L · |lunar 
cycle| represent the same duration of time via two different 
measurement processes and are thus equal. It also underscores 
that the variables L and D are the measurements resulting from 
these multiplicative comparisons. Thus, one way in which we 
can coherently view Lines 1 and 3 is by interpreting the roles of 
the letters D and L as different yet interconnected components 
of the same measurement process: they represent magnitudes in 
Line 1 and measurements resulting from multiplicative compar-
isons using those magnitudes in Line 3. 

Reasoning transformationally affords additional insight 
into the relationship between Lines 1 and 3. A transforma-
tional interpretation of D = 28L involves focusing on how 
multiplying by 28 changes the number of lunar cycles into 
the number of days (an expression to expression transforma-
tion). We view such reasoning as an instance of Vergnaud’s 
(1983) unit transformation (as opposed to the preservation of 
units via scaling). Accordingly, we find that the units of the 
number 28 can be interpreted as the units needed to transform 
‘lunar cycles’ into ‘days,’ perhaps via cancellation– for 
example, 

There is, however, another useful view of the number 28 that 
uses transformations to build upon the descriptive interpre-
tation set forth in the previous paragraph. Specifically, we 
call attention to the (equation to equation) transformation in 
which both sides of D · |day| = L · | lunar cycle| are divided by 
the (nonzero) magnitude |day|. This yields 

As we know that |lunar cycle| = 28 · |day| from our descrip-
tive interpretation of Line 1, this yields D = 28L, the 
equation in Line 3. These various interpretations of D = 28L 
are summarized in Table 2. 

 
The fruitfulness of explicating and coordinat-
ing interpretations of equivalence 
The framework we have outlined is an example of a concep-
tual analysis (Thompson, 2002) of the concept of 
equivalence because it explicates “what it is students might 
understand when they know a particular idea” (p. 196). Here 
we discuss the potential uses for this conceptual analysis and 
outline the various contributions it makes to the literature. 

Conceptually grounded conversations with students 

Thompson (2002) pointed out that a conceptual analysis is 
necessarily grounded in students’ experience and therefore 
“entails imagining students thinking about something in the 
context of discussing it” (p. 196). Accordingly, here we iden-
tify several points we raised in the previous section that 
could serve as the starting point for such conceptually 
grounded discussions with students. 

One of our key points in our response to Question 1 was 
the distinction that ‘28 days = 1 lunar cycle’ represented two 
measurements of the same magnitude using different units 
while ‘28 students = 1 teacher’ could not readily be inter-
preted in this way. The descriptive interpretation thus renders 
the former valid, but not the latter. We propose that rendering 
binary judgements about the validity of such equations 
potentially misses an opportunity for rich discussion. Chang-
ing the question from “is it valid or invalid?” to “what is the 
essential relationship the students and teacher ‘equation’ 
expresses?” could foster a productive discussion. We hypoth-
esize that such an activity could reinforce a greater awareness 
of why it is normative and conventional in the mathematical 
community to distinguish between proportional relationships 
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Numerical Transformational Descriptive

Not immediately 
useful in either 
task because 28 
is not equal to 1.

Enables transforming 
both sides by the 
same scalar (e.g.,  
37 · 28 students  
corresponds to 37 · 1 
teachers), regardless 
of whether the  
student attends to  
the nuances of 28 
students = 1 teacher 
vs. 28 students :  
1 teacher.

Uses measurements 
and magnitudes as a 
coherent way to 
interpret and classify 
certain proportional 
relationships as 
equalities (e.g., 28 
days = 1 lunar cycle) 
and others as  
correspondences 
(i.e. 28 students =  
1 teacher)

Table 1. Insights into Line 1 afforded by the three interpre-
tations of equivalence.



that are best represented using equations (e.g., 28 days =  
1 lunar cycle) and those that are best represented using ratios 
(e.g., 28 students : 1 teacher). 

More generally, in our experience students often recognize 
the apparent paradoxes that manifest in the various equations 
they write (though sometimes we have to juxtapose examples 
of student work and invite some reflection). Most of the time 
the equations are not invalid if understood in the manner 
intended: students know what they mean by and can reason 
productively with ‘28 students = 1 teacher,’ even if we could 
improve the notation. This is a great opportunity for us as 
educators to look for the coherent meaning in what is written 
before applying conventions to correct someone’s work. 
Learners use equations first to express a thought process, and 
we hope educators attend to that thought process. Therein lies 
the power of conceptual analysis: it provides a theoretical 
tool by which we can avoid surface-level judgments about 
‘misconceptions’ and ‘errors,’ enabling us instead to identify 
and explicate productive lines of reasoning. 

Another rich point of discussion involves encouraging stu-
dents to reflect on and recognize the inherent nuance in uses 
of equivalence that otherwise might seem trivial and overly 

familiar. Productively reasoning about such fundamental 
tasks as those featured in this article requires subtle shifts 
between equations that express multiplicative comparisons of 
units (e.g., 28 days = 1 lunar cycle) and equations that 
express the relationship between measurements in these units 
(e.g., D = 28L)–indeed, distinguishing between D and |day| 
is at the core of our answer to Question 3 above. We find that 
many of our own students (at universities in the United States 
of modest selectivity) are not accustomed to thinking about 
these subtleties, even when implicitly present in their work. 
We propose that engaging students in guided reflections on 
these kinds of paired tasks through the lens of the interpreta-
tions of equivalence can serve as an excellent means by 
which to encourage students to attend to these ideas. 

Contributions to the literature 

In addition to facilitating productive conversations with stu-
dents, we believe the conceptual analysis set forth in this 
article contributes to the literature in three key ways. First, 
the three interpretations contribute to the literature on equiv-
alence by providing an answer to the question: what exactly 
does a relational understanding of the equal sign entail? 
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Table 2. Using the three interpretations to parse D = 28L.



While the three interpretations of equivalence we leverage 
here are all set forth in some form in prior literature, our 
analysis extends this work by explicitly operationalizing 
these interpretations through the lens of research on mea-
surement and multiplicative reasoning (e.g., Iszak & 
Beckmann, 2019; Thompson, et al., 2014; Vergnaud, 1983). 
More generally, we see this framework as a powerful theo-
retical tool that could inform (and be refined by) subsequent 
studies of students’ cognition and instructional design. 

Second, our analysis contributes to the literature on multi-
plicative reasoning. Vergnaud (1988), for example, defined 
the multiplicative conceptual field to be the set of “all situa-
tions that can be analyzed as simple and multiple proportion 
problems and for which one usually needs to multiply or 
divide” (p. 141). We observe that such measurement equa-
tions as ‘28 days = 1 lunar cycle’ are a facet of the 
multiplicative conceptual field that has not received clear 
attention in the literature. Our analysis reveals that under-
standing and flexibly reasoning with such equations– 
and how they relate to their algebraic counterparts like  
‘D = 28L’–to be surprisingly nuanced and complex. This 
paper thus focuses on sensitizing both mathematics educators 
and the students we teach to this recurrent challenge while 
also providing a means of addressing it. 

Lastly, our analysis underscores a need for more explicit 
attention to descriptive equivalence, an interpretation which 
afforded critical insights in our analysis but has generally 
received the least explicit attention in the literature. Consider 
the following topics across the K-16 spectrum that could be 
explored from an explicit descriptive focus: 

At the elementary level, for example, descriptive 
equivalence allows us to warrant equations like the dis-
tributive property in ways that complement the 
conventional transformational approach (see Figure 2). 

At the middle and secondary levels, descriptive equiv-
alence can productively justify exponential laws. For 
instance, if a population is doubling every minute, then 
it is quadrupling every two minutes. By expressing the 
population after 2 minutes in these two ways, we can 
conclude P · 2t = P · 4t /2. Recognizing how the growth 
of the same population can be alternatively modeled in 
terms of doubling, tripling, quadrupling, etc. while 
keeping the correspondence between time and popula-
tion invariant is quantitatively meaningful and 
productive. 

At the undergraduate level, Lockwood, Caughman, and 
Weber (2020) have explored how combinatorial proofs 
differ fundamentally from other types of proof by 
virtue of the fact that they often warrant equivalence 
based on different counting processes for the same set 
of objects. This suggests that descriptive interpretations 
could be important beyond measurement contexts. 

Our point is not that descriptive equivalence is underuti-
lized but that it is underemphasized. The above examples 
spanning key topics across the school and university mathe-
matical spectrum provide some indication of the scope and 
importance of descriptive equivalence and, accordingly, the 
need for researchers and educators to attend to it more explic-
itly. We hope that future work will continue to explore how 
students coordinate these various notions of equivalence in 
practice and how they can be harnessed and juxtaposed for 
rich sense-making. Indeed, we would love if more of our pre-
service teachers’ work with equations was less guided by 
‘what is allowed’ and more guided by ‘what makes sense’. 

 
Notes 
[1] The students we refer to in this article are epistemic–that is, they are 
theoretical images of real students we adopt in order to explain their math-
ematical activity and render it sensible in some way (Thompson, 2002). 
Though our primary experiences in this regard are with undergraduate stu-
dents, these tasks are commonly presented to middle school and high school 
algebra students as well; we anticipate those students exhibit similar lines 
of reasoning. 
[2] For simplicity, we consider expressions with at most one variable. 
[3] There is ambiguity with respect to some of these terms. First, we shall 
use ‘numerical interpretation’ to refer to the interpretation of equivalence 
and ‘numerical expression’ to refer to the algebraic object. Second, the 
interpretations of equivalence we describe appear under different names in 
the literature. Numerical equivalence has been called insertion (Prediger & 
Zwetzschler, 2013) or substitution (e.g., Bishop, Lamb, Philipp, Whitacre & 
Schapelle, 2016) equivalence, transformational equivalence has been 
called syntactic equivalence (e.g., Solares & Kieran, 2013), and descriptive 
equivalence has been called description equivalence (e.g., Prediger & Zwet-
zschler, 2013). 
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A clay envelope and tokens used for counting (Uruk period, 3200 BC to 2700 BC). Tokens were used to record the amount of a com-
modity, with different shapes of tokens standing for different numbers. The envelope ensured that the number and type of tokens 
could not be altered, but they could only be checked by breaking the envelope. To avoid this, images of the tokens were later 
indented into the outside of the envelope, and these marks eventually replaced the tokens (see p. 24). Adapted from a photo by 
Marie-Lan Nguyen, CC-BY 2.5.




