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Colin Foster, in issue 42(3), has presented a very interesting 
but quite provoking point of view to which I would like to 
respond in this short communication. I will not be very orig-
inal in this contribution; my aim is only that of recalling 
some important considerations that I learnt from reading 
other researchers’ work. Hence, I will mainly draw on the 
work of others, ‘giants’ of mathematics education, on whose 
shoulders we all stand. 
 
A very hazardous pursuit 
In his article, Foster presents a representation of multiplica-
tion based on the Cartesian plane. As he relates, his research 
group is building a curriculum (and related materials) seek-
ing coherence in representations. Such coherence is 
achieved by “prioritising a single representation of num-
ber—the number line” (p. 21). The author recognises that 
such seeking of coherence could be considered detrimental 
but supports his position by stating that, “It is possible that 
multiple representations […] could result in an overall less 
powerful picture for the student than might be obtained with 
one carefully-chosen representation” (p. 25). 

The representation presented by Foster appears to be a 
good model for multiplication in the sense of Fischbein 
(1987). Indeed, it is self-consistent and, at the same time, is 
easily relatable to other models of multiplication. As Foster 
argues, it has the potential for what Fischbein calls heuristic 
efficacy and it may be intuitive because it draws on the num-
ber line. Hence, I am not claiming in any way that the 
chosen representation is not as good as others. However, I 
take a semiotic point of view to argue that Foster’s assump-
tion, that multiple representations may result in some sort of 
confusion, is inadmissible. The very core of my argument 
resides in what I consider a mathematical object to be. In any 
theory of semiosis, the representation (or sign, representa-
men, zeichen, etc.) is distinguished from what is represented 
(or object, reference, gegenstand, etc.). In decades of 
research about mathematics teaching and learning, Ray-
mond Duval (e.g., 2006) has wondered how students can 
“distinguish the represented object from the semiotic repre-
sentation used if they cannot get access to the mathematical 
object apart from the semiotic representations” (p. 107). 
According to him, the dissociation between the representa-
tion and the object happens only when non-congruent 
registers are confronted. It is not just a matter of choosing 
the most suitable representation (whatever this may mean). 
If they are not confronted with several representations, the 

students will never distinguish the object from its represen-
tation; learning about the object (multiplication in this case) 
will never happen. Based on Duval’s work and my research, 
I believe not only that “presenting different models to pupils 
is relevant, but also that the operation of putting in relation 
the models has the potential to be particularly productive” 
(Maffia & Mariotti, 2018, p. 35). 

As Duval (2006) states: 

Too often, investigations focus on what the right repre-
sentations are or what the most accessible register 
would be in order to make students truly understand 
and use some particular mathematical knowledge. With 
such concern of this type teaching goes no further than 
a surface level. (p. 128) 

Of course, interpreting this quotation requires specifying what 
a ‘surface’ or a ‘deep’ level is, and this depends on what we 
consider as successful teaching/learning. In the conclusion of 
his article, Foster contrasts “trying to find the quickest, easiest 
way to address each narrow skill” with “the long-term invest-
ment of building the most powerfully useful and coherent 
models” (p. 26), and he takes the second position. However, 
what “powerfully useful” may mean must be addressed. In 
this section I argued that privileging one representation is haz-
ardous (using Duval’s words). In the next section, I will state 
that the concept of ‘usefulness’ may change considerably 
when we consider not only individual learning but frame the 
teaching/learning of mathematics as a cultural endeavour—
which means considering ethnomathematics. 
 
Mathematics as culture 
Addressing the usefulness of teaching/learning requires 
wondering what we teach mathematics for. According to the 
answer we provide, we may distinguish mathematical edu-
cation from mathematical training (Bishop, 1988). As noted 
by Ubiratan D’Ambrosio (1994), “we are under pressure 
from educational authorities, community leaders, parents, 
and students themselves to get ‘better results’ to improve our 
marks, to be better in our marksmanship” (p. 444). I would 
classify the classroom activity realised for these purposes as 
mathematical training. While I am strongly convinced that 
Foster does not want to emphasise these activities, I see the 
risk of diverting in that direction when looking for the most 
useful unique representation for multiplication (or any other 
mathematical content). This is because, by forgetting other 
representations that have been shared by different popula-
tions during history, we are not considering that mathematics 
is a cultural activity. 

Taking the point of view of ethnomathematics means 
recognising “that every cultural group generates its own ways 
of explaining, understanding, and coping with reality, trans-
mits and organizes these ways into techniques […] and 
diffuses them through the group; improving and transmitting 
them from generation to generation” (D’Ambrosio, 1994,  
p. 449). The cultural history of a community (comprehending 
each and all individuals) allows us to understand how tech-
niques have been generated by our ancestors and then 
inherited through generations. Many of the representations 
that appeared in the course of the history of mathematics have 
then been abandoned for others that were more useful—at that 
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moment, for someone, for some purpose. This is the case for 
geometry as mean of proving arithmetical theorems (e.g., 
largely used by Euclid) which has been replaced by algebraic 
notations. Rectangles were the main means for representing 
multiplication in the Hellenistic period, in al-Khwarizmi’s 
work, and they were still used by Italian mathematicians in 
medieval times. In Radford’s (2008) words “artifacts are bear-
ers of the historical cognitive activity deposited in them by 
previous generations […], in using them in the course of our 
activities the subjective domain and the cultural-objective one 
become imbricated into each other” (p. 451), and representa-
tions are symbolic artefacts (Rabardel, 1995) that have shaped 
the mathematical activity of our ancestors and we—as mem-
bers of our own culture—should know that. 

The rectangular representation that is chiefly criticised by 
Foster—‘algebra tiles’—is a cultural product and being able 
to interpret it allows understanding the mathematical activity 
of the past. In my research, I described how Italian fifth 
graders who knew how to use and interpret rectangular rep-
resentations of multiplication were able to make sense of 
Tartaglia’s original words and infer from them the definition 
of prime numbers (Maffia, 2019). This was possible because 
they could notice that some numbers can be only represented 
as rectangles having a side that is long as the number itself. 
While the same (pure) numbers were used to represent the 
length of the side and the area of the rectangle, it was the dif-
ferent roles of the two measures that allowed children to 
understand what a prime number was according to a mathe-
matician of another time. At least (but not only) for this 
reason, I would describe the rectangular model as a power-
fully useful representation. 

We certainly know that different symbolisations have 
been developed in different cultures and it is very likely 
that there are differences in values also […] How 
unique these values are, or how separable a technology 
is from its values must also remain open questions. 
(Bishop, 1988, p. 187). 

To conclude, I would like to stress again how valuable the 
representation proposed by Foster is, but, taking a semiotic 
and ethnomathematical perspective—based on the argu-
ments presented through the giant voices of Duval, 
D’Ambrosio, Radford, Bishop, and my smaller humble 
one—I would strongly suggest reconsidering the pursuit of a 
unique, powerful, useful representation of multiplication, to 
be prioritised above all others. 
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Fraction as narrative: reflection 
on the conversations of Hewitt, 
Pimm and Sfard 

AEHEE AHN 

How is mathematics different in different languages? The 
conversations of Hewitt and Pimm, in issue 41(2), and 
Sfard, in issue 42(1), inspired me to re-think the relations 
between fractional language and fraction conceptions. 
Hewitt and Pimm talked about a classroom situation in 
which a Chinese teacher (called Ms Dai) accepted Figure 1b 
as a match of the fraction 3⁄5 but rejected Figure 1a because 
it is not equally partitioned. This short communication pro-
poses the idea of a fraction as a narrative, as one explanation 
for the behaviour of the Chinese teacher. 

Sfard discussed the teacher’s reaction with reference to 
the Chinese language structure used for fractions. She sug-
gested that the teacher’s rejection was caused by Chinese 
fraction language. Whereas English fractions name the prod-
uct of operations, fractions in Chinese imply actions such as 
partitioning or dividing as well as the outcome. If Ms Dai’s 
reactions are related to the Chinese language structure, I 
wondered what it would be like if I (a Korean native) inter-
preted her reaction through a Korean lens. Like Sfard, I tried 
to interpret Ms Dai’s logic based on Korean language struc-
ture by building on Sfard’s argument that fractions are 
actions in Chinese.  

The order of reading and writing fractions in Korean is 
the same as in Chinese. The Korean words for fractions are 
based on Chinese words. The meanings and the usage 
of each Korean fraction word are very similar to those of 
Chinese words (see Table 1).  

Figure 1. Drawings used in Ms Dai’s lesson. 
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Table 1. Chinese and Korean language for fractions. 

The Korean word 분 (read as ‘bun’) comes from the Chi-
nese word 分 (fēn) and is used as a noun and a verb with the 
meaning of parts, pieces, partition, and divide, like 分. The 
word does not originally imply the meaning of ‘equal’, but 
in fractions it is commonly used to include the meaning of 
equal partitions. The next word 의 (read as ‘ui’) is from the 
Chinese character 之 (zhī), and instead of being used alone, 
it is used with other words as a postposition to represent the 
relationship between the whole and the part, and has a simi-
lar meaning to the English word ‘of’ [1]. Pimm translated 
the Chinese fraction name as ‘denominator (equal) parts of 
(which) numerator’.  

The evidence of the fraction names show that the Korean 
and Chinese languages basically describe fractions in terms 
of whole-part relations: not from part to whole but from 
whole to part. In Korean, I believe whole-part thinking not 
only refers to the order of considering a whole first and then 
parts later. It also reflects the action process of constructing 
fractions as narratives.  

Fractions in Korean tell series of actions narratively. As an 
example, I am reminded of teaching fractions with visual 
representations to primary school students in Korea. Firstly, 
while saying (reading, writing, or thinking) a denominator 
(number), I drew a rectangle on a blackboard. While saying 
분 or drawing a fraction horizontal line, I partitioned the rec-
tangle into several equal parts. The two actions are closely 
interrelated and often performed consecutively. Next, while 
saying 의, I stressed whole-part relations between a numerator 
and the whole rectangle figure I drew. Lastly, while saying a 
numerator (number), I shaded some parts in the partitioned 
rectangle. In a class of words, the operative description flows 
from a denominator to a numerator. A denominator refers to a 
whole implying unitising; 분  means equipartitioning; 의 
shows whole-part relations; and a numerator implies shading 
or choosing parts. Every word of Korean fraction names is 
linked to actions from unitising to partitioning to shading, 
along with the focus shift from a whole to parts. 

In terms of narrative, equal partitioning related to a 
denominator sets up the context of unit fractions and is 
embedded as orientation in fractional actions. In other 
words, the essential first step of the narrative is equal parti-
tioning, and unit fractions involving equal partitioning 
assume the initiation of the narrative. Equal partitioning pro-
vides the set-up context, then the narrative has been 
completed by associating with a numerator in company with 
shading or selecting actions. Labov (2006) symbolised the 
most reportable event as e0 and used e–n for past events, such 
as e–1, e–2, etc., depending on the order of the series of 
events. According to the Labov’s symbolisation of narrative, 
I narratively describe fractions as follows: 

e–2 Equipartitioning a whole 

e–1 Shading or choosing some of equal parts 

e0 A fraction 

A fraction e0 is a completed event and the most reportable 
event. The recursive series of fractional actions precedes e0, 
and equipartitioning as an initial event is the orientation of a 
fraction.  

Then, how does Korean fraction language compare to 
English fraction language? I examined the difference by tak-
ing the example of 3⁄5 and tackling it from my view of 
fractions as narrative. The English 3⁄5, commonly read as 
three-fifths, makes me think of a rectangle with three 
coloured areas out of a partitioned whole as an outcome or 
an object, similar to the comment made by Hewitt and 
Pimm. English fractions mean how much of an area is or 
how many are shaded out of a whole, which is synthetic. 
Whereas, in Korean 3⁄5 translates as five-parts-of-three and 
makes me think of two steps: unitising and partitioning a 
whole into five identical areas and then finding three parts 
out of the partitioned whole. As an analytical process, a 
whole is considered first and then parts can exist. The 
denominator 5 provides the assumed context of equal parti-
tioning and presupposes the unit fraction 1⁄5. Then, the 
fraction 3⁄5 is completely constructed with the numerator 3. I 
summarise the difference visually in Figure 2.  

If I interpreted Ms Dai’s rejection from my perspective, 
the fraction representation that is not equally partitioned 
(Figure 1a) is false. The fraction 3⁄5 already assumes an equal 
partition of a whole, but Figure 1a went wrong from the 
assumed setting. Even though the outcome of shaded parts 
matches the region of 3⁄5, this is unlikely to be considered 
true since the first action, non-equipartitioning, is contrary to 
the starting situation of the fraction narrative.  

Then, I wondered about Korean teachers’ reactions. Since 
the Chinese and Korean language of fractions are similar, 
would Korean teachers’ reactions be similar to Ms Dai’s? In 
order to see how Korean teachers react to the visual represen-
tation that is not equally partitioned, I had a talk with three 
Korean primary school teachers individually. They all have 
around 15 years of teaching experience in Korea. While 
showing Figure 1, I asked their thinking about the images. 
The question was ‘what do you think of the drawings for 
3⁄5?’. To tell you the result first, all the three teachers rejected 
Figure 1a, as Ms Dai did. I undertook to understand their con-
ceptions or logic, and I paid attention to where their focus on 
fractions had been. One teacher (called Ms Kim) said, 

This shaded part can be five 분 [parts] 의 [of] three [3⁄5] 
of the figure but fractions have to be equally parti-
tioned. Some out of some equal parts. At first I thought 
both are correct but soon I think thinking of only three 

Fraction 
language 
structure

Chinese Denominator – 分 (parts) – 之 
(of) – Numerator

Korean Denominator – 분 (parts) – 의 
(of) – Numerator

Figure 2. Fraction 3⁄5 in English and in Korean. 
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shaded parts in the rectangle focuses on the numerator 
three and that overlooks the precondition of fraction 
concepts equal partitioning. 

Thinking of fractions as narrative, Ms Kim considered 
fractions with actions from equipartitioning to shading. She 
stressed equipartitioning in fraction concepts, mentioning it 
three times (equally partitioned, equal parts, and equal parti-
tioning) in our short conversation. She linked partitioning 
actions to a denominator and regarded a denominator as a 
fundamental feature for fractions compared to a numerator. 
In her logic, partitioning as a first step was wrong, thus the 
representation Figure 1a is false. The other teachers 
answered similarly to her. This shows equal partitioning is 
embedded as an assumed context in Korean fractions and the 
fractional actions begin from it.  

Through the next step, I was able to see more clearly that 
the teachers’ focus is on action process more than lines or the 
results of drawing fraction representations. As a next step, I 
showed Figure 3 to the Korean teachers.  

Figure 3 is an insufficient drawing that misses one line 
and therefore does not clearly show the representation of the 
fraction 3⁄5. Before showing the drawing, I guessed the 
Korean teachers’ answer that this is also false. They said, 
however, this is a tentative state, not true or false, since they 
cannot determine whether or not equipartitioning is done 
properly yet. This might be what Hewitt and Pimm said in 
the subtitle of their conversation: ‘true, false, or somewhere 
in-between’. It might be somewhere in between true and 
false. If I symbolise 3⁄5 as e0 as a completed event, the lines 
and shadings play a role in showing the series of events pre-
ceding the e0. The 3⁄5 of Figure 3, however, does not clearly 
provide the initial process e–2 due to the one line missing. 
Missing one line makes it difficult to trace what happened 
recursively. If one line is added to have equal five congruent 
parts, this figure can be true, and if one line is drawn to have 
non-congruent parts, this figure can be false. I cannot name 
it in Korean starting with the denominator ‘five-분 (parts)- 
의(of)’, as this is not equally partitioned into five. In order to 
make it 3⁄5, I might or ask students to track what action was 
missing in order to set up the assumed context of the fraction 
(i.e., drawing one line for equal partitions).  

I have interpreted the classroom incident by Hewitt and 
Pimm, built on Sfard’s view, and proposed the idea of a frac-
tion as a narrative, based on whole-part thinking in the 
Korean fraction language. The Korean fractional language 
shows a different understanding of fractions compared to 
English: Fractions in Korean as a narrative assume equal 

partitions, which leads to unit fractions as a starting point of 
fraction concepts. This is how my native language shapes 
the way I see the fraction world.  

 
Note 
[1] Information about the words’ meanings and the Chinese origins of 
Korean come from The National Institute of the Korean Language, . I also 
give details based on my Korean knowledge as a Korean native speaker.  
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From the archives 
Geoffrey Howson died on 1 November 2022. He contributed 
to curriculum reforms in the UK and internationally, was 
active within ICMI and is well known for his contributions 
to the history of mathematics education. The following is an 
edited excerpt from his 1984 article ‘The questions remain 
the same: only the solutions change’ in FLM 4(2), 14–17.  

 
Mathematics educators would not in general appear to have 
either a great knowledge of, or even concern for, the history of 
their subject. This I believe to be unfortunate for a number of 
reasons. A real understanding of the position in which we find 
ourselves today presupposes an understanding of how we 
arrived at this position. Moreover, this lack of a knowledge of 
the past can lead to a continual “reinvention of the wheel”—
there is a need for a shared stock of knowledge which 
mathematics educators can take for granted and on which they 
can build. Yet a facile view of history can lead to the argument 
that “It has all been said before” and to despair. If we wish to 
gain help and encouragement from history it is essential that 
we probe more deeply and study in detail the gradual evolution 
and elaboration of responses to key problems. (Thus, for exam-
ple, there is a considerable difference between our present-day 
understanding of the difficulties of presenting mathematics via 
a text and that of Robert Recorde in the mid-sixteenth century. 
Nevertheless, Recorde succeeded in identifying some key 
issues concerned with the writing of texts which will always 
face the author—and the reader.) Also, it is in such studies that 
we shall identify that basic “foundation” knowledge. For com-
parison we note how within the sphere of mathematics proper 
it is the good expository survey article which in tracing the his-
torical development of a subject effectively defines what has 
now become the professional’s basic knowledge within that 
particular area. Mathematicians appear to have accepted this 
fact, and are beginning to recognise how highly the ability to 
write comprehensive and comprehensible survey articles 
should be ranked. Mathematics educators have yet to come to 
terms with the idea. 
 
[…] 
 
As if to reassure us that everything in education has been 
said or done before, it must be remarked that in the past not 
a great deal of attention has been paid to the reasons which 
people might have for learning mathematics, and what place 
students see for it within their “general education” or their 
process of “growing up.” 

Figure 3. Fraction rectangle missing one line.
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Robert Recorde, writing in 1551, clearly distinguished 
between two types of reader who might use his geometry 
text. There were those “who study principally for learning” 
and those who wished to acquire the knowledge, for some 
purpose or other, but who had “no time to travail [work] for 
exacter knowledge”[1]. In a sense Recorde roughly distin-
guishes between those who, to use Mellin-Olsen’s (1981) 
terms, wish to learn because they attach personal signifi-
cance to what is being presented to them, and those who see 
such knowledge as merely instrumental in attaining other, 
possibly non-mathematical, goals. Recorde, however, was 
not writing primarily for the school pupil, but for the maturer 
student. It is highly unlikely that Shakespeare would have 
chanced upon his works at the school he attended in Strat-
ford-upon-Avon. Yet he, too, had something to say on 
motivation—or rather the lack of it—when he described “the 
whining school-boy, with his satchel and shining morning 
face, creeping like a snail unwillingly to school” [2]. 

For several centuries motivation was provided within the 
schools primarily by the use of the birch and rod. There was 
also the power of expulsion—Arnold, the famed nineteenth-
century headmaster of Rugby School explained that, “Till a 
man learns that the first, second and third duty of a school-
master is to get rid of unpromising subjects [i.e. pupils], a 
great public school will never be what it might be and what 
it ought to be” (Ballard, 1969, p. 29). Today’s teachers must 
smile ruefully at such advice—the “unpromising” cannot be 
removed from state schools quite so easily. The birch, which 
served Arnold well but which was never very successful in 
meeting its metaphorical ends—for often riots erupted in the 
schools and on occasions had to be quelled by the army—
has in the past century been displaced as the prime motivator 
by the examination. Vast and complicated examination sys-
tems have been established, educational ladders have been 
erected, and meritocracies founded on systems where suc-
cess has frequently been dependent on passing 
examinations, usually with a mathematical component. In 
expanding systems, with respect to both educational oppor-
tunities and subsequent occupational rewards, the 
examination has proved a very powerful motivator indeed. 
Now, however, that period of historical growth appears to be 
coming to an end—at least, so far as the West is concerned. 
A motivational vacuum is developing for many students 
within those educational systems which offer universal sec-
ondary education. For the first time it is becoming 
imperative to distinguish carefully between two questions. 
The first, asked by society, is What can teaching mathemat-
ics contribute to a person’s general education?; the second, 
asked by the student, is What can learning mathematics con-
tribute to my personal growth? 

 
Editor’s notes 
[1] I have been unable to trace this quotation. I assume it is somewhere in 
the Preface to Recorde’s ‘The Pathway to Knowledg, containing the First 
Principles of Geometry’ which is unpaginated and difficult to read.  
[2] From Jaques’ ‘Seven ages of man’ monologue in ‘As You Like It’ Act II 
Scene VII. 
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Jeremy Kilpatrick died on 17 September 2022. His contribu-
tions to mathematics education are too numerous to list here. 
Suffice to say he was awarded the 2007 Felix Klein Medal 
and was a member of the FLM Advisory Board for twenty-
three years, 1980–2003. The following is an edited version 
of his 1984 short communication on the theme ‘Research 
problems in mathematics education’ in FLM 4(1), 45–46. It 
was written in response to a request by David Wheeler for 
suggestions of problems that might be the focus of mathe-
matics education, akin to Hilbert’s problems posed in his 
address to the IMU in 1900.  
 
You undoubtedly know that when the program committee 
for ICME 4 invited Freudenthal to be a plenary speaker at 
Berkeley in 1980, their hope and expectation was that he 
might attempt a Hilbertian list for our field. He didn’t, and 
I’ve about decided that such a list doesn’t make sense for 
mathematics education since our problems are never clearly 
defined, let alone solved. Each generation of mathematics 
educators ends up wrestling with many of the same prob-
lems the preceding generations thought they had “solved”, 
and I think that’s likely to be a permanent condition of our 
field, not simply a product of our limited history and our 
lack of agreed-on criteria for what problems are “solvable”. 
We don’t solve problems of mathematics education, we inter 
them. Like Dracula, they come back to haunt us because we 
never quite manage to put a stake through their heart. 

Nevertheless, I have attempted to define three problems 
that, even if not well expressed or solvable, seem to me to be 
central to our field. All three problems are at the interface 
between curriculum and instruction. 

The first problem concerns skills and “automaticity of 
response”. One reason mathematics teachers provide “drill and 
practice” for pupils is that they want the pupils to be able to 
respond automatically to certain questions (e.g., what is the 
product of 5 and 9?). The argument is that, when such 
responses are automatic, the pupil’s attention is free for consid-
eration of more complex questions (e.g., do I next add the 
remaining number or multiply by it?) In the January [1983] 
issue of the Journal for Research in Mathematics Education, 
Bob Gagné argues that “automaticity of skills” has been under-
valued by mathematics educators. One can ask, however, what 
price automaticity? Les Steffe and Rick Blake, in the May 
JRME, contend that too great a stress on automatic responses 
is likely to leave pupils confused as to the meaning of what 
they are doing. It’s an old debate—how are “meaning” and 
“automaticity” to be orchestrated? Should one teach for auto-
maticity and let meaning follow—running the risk of finding 
what Kath Hart found in the CSMS project with respect to ratio 
and proportion: “No evidence in this topic of rules learned and 
repeated with understanding” (JRME, March 1983, p. 124)? 
Should one teach for meaning, and let automaticity follow—as 
some proponents of the “new math” advocated? Or should one 
phrase the issue as William Brownell did in the title of his 1956 
Arithmetic Teacher article: “Meaning and Skill—Maintaining 
the Balance”? The Hilbertian problem might be posed as fol-
lows: For each skill in the school mathematics curriculum, 
what level of automaticity is optimal for subsequent use of that 
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skill, and how can the skill be made meaningful without 
inhibiting automaticity? Behind this problem is the old joke in 
which the centipede becomes selfconscious about where he 
puts his feet and then trips himself up. Certain skills need to be 
brought to consciousness—so they can be understood and con-
trolled more precisely—and then made automatic. We know 
something about how this might be done in training pilots or 
coaching athletes; do those principles transfer to the mathe-
matics class? 

The second problem concerns the hierarchical view of math-
ematics learning that many people have adopted—how does it 
affect mathematics teaching? Jere Brophy, an educational psy-
chologist at Michigan State, was quoted recently as saying that 
mathematics educators are misguided who believe that, because 
calculators are so easily available, we can drop from the school 
mathematics curriculum the multiplication of numbers with 
more than two digits. Brophy argues that “performance must be 
perfect on low-level objectives if success on higher-level objec-
tives is to be reasonably expected” (Notes and News, Institute 
for Teaching, Michigan State University, 25 February 1983,  
p. 3). Leaving aside the question of what it might mean to drop 
a certain kind of multiplication from the curriculum, let us con-
sider Brophy’s argument for putting the low-level spinach 
before the high-level dessert. Certainly, many teachers of math-
ematics have bought the morality and good sense of this 
argument. But where is it written that low-level must or should 
come before high- level? Zoltan Dienes once broached what he 
called the “deep-end hypothesis”—the idea that learning might 
be improved if pupils were thrown in at the deep end of a sub-
ject, and compelled to sink or swim, rather than being helped 
along from the shallow end. The Hilbertian problem might be 
something like: What are the effects on learning if instruction is 
aimed at the attainment of certain “higher-level” objectives 
given imperfect attainment of related “low-level” objectives? 
This formulation of the problem begs the question of how one 
establishes whether and how two objectives are related. It also 
neglects the issue cited at the beginning of this paragraph—
what are the effects on teaching of this low-level/high-level 
view of objectives? 

The third problem concerns transfer. Everyone knows that 
Thorndike et al. showed conclusively that the study of math-
ematics doesn’t make pupils better reasoners, yet teachers 
remain convinced of its power to do so. One way to reinter-
pret Thorndike’s research is to suggest that perhaps his 
instruments were insensitive to certain changes that studying 
mathematics makes in how pupils think. If the teachers are 
right and Thorndike wrong, it might be worthwhile to 
develop more sensitive instruments for measuring reason-
ing—and other intellectual abilities likely to be affected by 
mathematics learning. The Hilbertian problem: What gen-
eral intellectual abilities are affected by the study of 
mathematics, and how are they affected? Stated this way, the 
problem is too broad to be addressed reasonably, but pieces 
of the problem might be amenable to attack. 

I hope this response to your request for problems hasn’t 
affirmed the old saw that a fool can ask more questions than 
a wise man can answer. Better, perhaps, is James Thurber’s 
observation: It’s better to know some of the questions than 
all of the answers. Best wishes to you in orchestrating the 
responses you get.  

 
 
Heinrich Bauersfeld died on 1 December 2022. He was one of 
the founding directors of the Research Institute for Mathemat-
ics Education at Bielefeld University and a pioneer in 
including social interactions in mathematics education 
research. In collaboration with Paul Cobb, Terry Wood and 
Erna Yackel he sought to integrate psychological and social 
perspectives on mathematics learning. He was a member of 
the original FLM Advisory Board, serving from 1980–1990. 
The following is an edited excerpt from his article ‘Integrating 
theories for mathematics education’ in FLM 12(2), 19–28. 
 
An attempt at integration 

If the kingpin of cognition is its capacity for bringing 
forth meaning, then information is not pre-established 
as a given order, but it amounts to regularities that 
emerge from the cognitive activities themselves 
(Varela, 1990, p. 121/66) 

The outlined positions are very near to the radical construc-
tivist principle (von Glasersfeld, 1991), as well as to 
fundamental pragmatic linguists’ or social interactionists’ 
theses (Mehan and Wood, 1975; Walkerdine, 1988; Coulter, 
1990), to fundamentals of discourse analysis (Cazden 1986), 
and to certain perspectives of systems theory approaches 
(Luhmann, 1990; Maturana and Varela, 1986). One cannot 
expect to identify clear boundaries for the region of conver-
gence at this level of abstractness. But it appears to be 
possible to enlist a few shared core convictions in this area. 
(The descriptors used will present a mixture, just because it is 
impossible to describe the deficient parts of an approach with 
the specific “language game” of the very same approach.) 

3.1 Learning is a process of personal life forming, a 
process of an interactive adapting to a culture through active 
participation (which in parallel also produces and develops 
the culture itself), rather than a transmission of norms, 
knowledge and objectified items. 

3.2 Meaning lies with the use of words, sentences, or 
signs and symbols rather than in the related sounds, signs or 
pictures, or even in a related set of such items. 

3.3 Languaging (the French term parole as distinct from 
that of langage) is a social practice, serving in communica-
tion for pointing at shared experiences and for orientation in 
the same culture, rather than as an instrument for the direct 
transportation of sense or as a carrier of attached meanings. 

3.4 Knowing or remembering something denotes an actual 
activation of options from experienced actions rather than a 
storable, treatable, and retrievable object-like item, called 
knowledge, from a loft, called memory. 

3.5 Mathematising is a practice based on social conven-
tions rather than the applying of an universally applicable set 
of eternal truths; according to Davis and Hersh (1980), this 
holds for mathematics itself. 

3.6 (Internal) Representations are individual constructs, 
emerging through social interaction as a viable balance 
between the person’s actual interests and her realised con-
straints, rather than an internal one-to-one mapping of 
something pre-given or a fitting re-construction of “the” 
world. 

FLM 43(1) - March 2023.qxp_FLM  2023-02-04  8:21 PM  Page 35



36

3.7 Using visualisations and embodiments with the 
related intention of using them as didactical means depends 
on taken-as-shared social conventions in classroom practice 
rather than on a plain reading or the discovering of inherent 
or inbuilt mathematical structures and meanings. 

3.8 Teaching is the attempt to organise an interactive and 
reflexive process, with the teacher engaging in a constantly 
continuing and mutual differentiating and actualising of 
activities with the students, and thus the establishing and 
maintaining of a classroom “culture”, rather than the trans-
mission, introduction, or even re-discovery of pre-given and 
objectively codified knowledge. 

 
The notion of an “integrating perspective” in the following 
will refer to this set of core convictions. It is quite challeng-
ing to extend such an integrated perspective into possible 
didactical considerations—no inferences, clearly, since what 
we have mostly refers to single theories, if anything at all. At 
least in the interest of students and teachers, such an attempt 
appears to be as necessary as the bustling discussion of com-
patibilities, of the drawing of boundaries, and of attempting 
to decide the relative dominance of one model over another. 
 
[...] 
 
Language, languaging and the teacher 
In a narrow interchange with the described attitudes, views 
about language will also have to undergo change. “Learning 
how to use language involves both learning the culture and 
learning how to express intentions in congruence with the 
culture” (Bruner & Haste, 1987, p 89). And “one has to con-
clude that the subtle and systematic basis upon which 
linguistic reference itself rests must reflect a natural organi-
zation of mind, one into which we grow through experience 
rather than one we achieve by learning” (p. 88). 

For many teachers the strength and the generalisability of 
mathematics is inseparable from the strictness and the preci-
sion of the related verbal or other symbolic representations. 
Similar to priests who celebrate the esoteric language game 
of their caste, many mathematics teachers permanently insist 
on saying things as precisely as possible. An observer may 
find the teacher insists on this technical language. For the 
students, the emphasis functions as a requirement to say it 
exactly “as she/he said it”.  

One may wonder whether many teachers “have it” at all in 
any other way. That is to say, they know how to talk about 
“it” in the terminology of the accepted language game but 
there seems to be not much more beyond this, as the limited 
availability in other “contexts”, the difficulties and shakiness 
of use in other situations suggests, and is also indicated by 
an inability to find adequate metaphors for the issues.  

To be fair, nobody has trained them in the initial phases to 
speak about the intended subject matter in everyday lan-
guage, to “point at” similar issues, etc. (Cognitivists may 
prefer descriptions like: they cannot “translate”, or “say it in 
other words”, they cannot “embed” or “visualise”, or “refer 
it to”, thus treating what is meant as an object rather than as 
something emerging from the actually situated processes.) In 
consequence, many mathematics teachers are quite rigid in 
their verbal aspirations and their related evaluations of stu-

dents’ utterances. But they are quite permissive in the social 
organisation of their class. Under the integrating perspective 
the opposite way round appears to be a more promising one: 
to accept and encourage students’ mathematical utterances 
within very wide limits with respect to how it is said, as long 
as a serious background (reason, argument, etc.) can be iden-
tified. But to be rigid about keeping the social regulations, 
namely, insisting on listening to others’ inventions and 
explanations, keeping turn-taking order, taking seriously the 
others’ serious contributions, etc.  

Analysing many videotapes has convinced me of the all-
too-general poverty of classroom communication with respect 
to this view (in many countries, by the way). If the culture the 
students inhabit in the classroom is poor in languaging and in 
presenting models of what is wanted, if it is lacking incentives 
and challenges, if it is more a non-transparent celebration of 
technical language rather than a participation in a scaffolding 
culture, and if it is neither providing resistance to the critical 
mind nor further orientation for the keen-minded, what then 
are we to expect from our schools?  
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Hysteresis as an authentic 
mathematics application 

AMENDA N. CHOW 

Integrating authentic applications in mathematics teaching is 
an important part of student learning because it supports 
classroom participation, engagement with assessments and 
greater retention, which leads to an overall increased interest 
in the subject (Campbell, Patterson, Busch-Vishniac & 
Kibler, 2008). To support this, I suggest a real-world practi-
cal application called ‘hysteresis’ as a motivation for 
learning a variety of mathematics topics. Hysteresis is well-
known in engineering and physics because of its connections 
to physical processes; however, it is not normally discussed 
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in mathematics education. Hysteresis provides an example 
that is not a function, and such ‘non-examples’ are often 
neglected in the context of teaching functions. 
 
An introduction to hysteresis  
Consider the dynamics of a thermostat, which is either in a 
state of being off or in a state of being on. Let 0 represent its 
off state and 1 represent its on state. In this example, con-
sider the thermostat switching on or off based on the 
temperature of a refrigerator. Suppose the thermostat turns 
the refrigerator off if the temperature is less than 0 degrees 
Celsius. This behaviour is shown in Figure 1a. On the other 
hand, suppose the thermostat switches from off to on when 
the temperature is 5 degrees, as depicted in Figure 1b. This 
means the path from off to on is different from on to off; that 
is, the dynamics of the thermostat are path dependent. This 
path dependence creates a loop as shown in Figure 1c. This 
loop is known as a hysteresis loop, and we say the perfor-
mance of the thermostat exhibits hysteresis. 

In the case of the thermostat, the presence of hysteresis is a 
benefit. Consider Figure 1a, which without the presence of 
hysteresis would mean any slight temperature change above 
or below zero causes the thermostat to frequently switch off 
and on. This would quickly wear down the components of the 
thermostat, and hence, the presence of hysteresis improves 
the performance and quality of a thermostat. Furthermore, in 
Figure 1c, the state of the thermostat may be 0 or 1 for tem-
perature values between 0 and 5.  That is, for a temperature 

between 0 and 5, there are two possibilities, namely 0 and 1, 
so this is not a function. Instead, in the presence of hysteresis, 
the state of the thermostat is determined by knowing whether 
it was off or on previously. This dependence on the past is 
known as the memory effect of hysteresis. 

In the example of the thermostat, hysteresis appears in a 
human-made device. Hysteresis is more often observed in 
natural processes such as freezing-thawing, magnetism, pop-
ulation dynamics, potential energy, and ecosystem changes 
(Aiki & Minchev 2005; Berdugo,Vidiella, Solé & Maestre, 
2022; Morris, 2011; Mukhamadullina, Kornev & Alimov, 
1998; Noori, 2014). Since hysteresis is a phenomenon that 
occurs in physical systems, it is commonly modelled by a 
differential equation, where x(t) ∈ ℝ is the solution to the 
differential equation, 

t ∈ ℝ  is time, and f is a continuous and differentiable map-
ping of x and u. In the context of determining whether a 
system exhibits hysteresis, u(t) ∈ ℝ is the input of the sys-
tem, and it affects the behaviour of x(t), which is called the 
output. The relationship between the input and output is 
given by the equation above. The plane used to depict a hys-
teresis loop is an input-output graph as shown in Figure 2. 
The horizontal axis has been labelled ‘input’ and the vertical 
axis has been labelled ‘output’, but they can also be symbol-
ized by u and x, respectively. The specific values of the input 

Figure 1. A thermostat with 0 as its off state and 1 as its on state, and its state dependent on the temperature. (a) The thermostat 
switching from on to off when the temperature is 0. (b) The thermostat switching from off to on when the temperature 
is 5. (c) The dynamics shown in (a) and (b) plotted together.

  (a)   (b)   (c)

Figure 2. (a) Input-output graph displaying no looping behaviour. (b) Input-output graph displaying a hysteresis loop.

  (a)   (b)
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and output do not add to the understanding of the discus-
sions presented, so numerical scales along the axes have 
been omitted. 

The thermostat example is discrete in that values of its 
output are either 1 or 0, and hence not a suitable solution to 
the equation above, which has continuous solutions for x(t). 
For a continuous example, consider the process of water 
freezing and thawing. We can tell how frozen water is by 
measuring its flow rate, which varies continuously. The out-
put is the flow rate of the water, and this depends on the 
temperature, which is the input. The input-output graph of 
these dynamics is shown in Figure 3a if freezing is exactly 
the reverse of thawing. In other words, the frozen object as it 
is thawing has initial frozen state labelled by F, and this state 
(measured by the flow rate of the water, which is the output) 
changes as the input (i.e., temperature) increases until reach-
ing its final thawed state denoted by W, and reversing these 
dynamics, freezing is the same curve in Figure 3a but from 
W to F if freezing is exactly the reverse of thawing. 

It has been shown that freezing is not exactly the reverse of 
thawing in Mukhamadullina, Kornev & Alimov (1998). This 
may be due to external factors such as different evaporation 
rates of water between freezing and thawing, and the fact 
water expands when it freezes. As freezing is not exactly the 
reverse of thawing, the curve from F to W for thawing cannot 
be used to represent freezing from W to F. Figure 3b depicts 
the difference from F to W (in black) as compared with from 
W to F (in gray). These dynamics result in a hysteresis loop, 
and we say the freezing-thawing process exhibits hysteresis. 
In the examples of freezing and thawing, and the perfor-
mance of the thermostat, there is a repetition between hot and 
cold temperatures that triggers each process to cycle over 
time. This repetitive nature is needed to test for hysteresis in 
a physical system, and consequently, the input is a periodic 
function (e.g., u(t) = sin(t) or u(t) = 0.1cos(2t)). Additional 
details about input-output graphs for hysteresis loops can be 
found in Morris (2011) and Oh & Bernstein (2005). 

Despite the differences in shapes of hysteresis loops 
observed in Figures 1c, 2b and 3b, the structure of all hys-
teresis loop has the appearance of one path lagging behind 
another. This observation led to the name hysteresis because 
the etymology of hysteresis means to lag behind (Morris, 
2011). Path dependence, the memory effect and lagging 

offer several ways to characterize hysteresis, and they 
inspire the following colloquial definitions for hysteresis. 

Hysteresis is a process that follows a different path for-
ward than backward when the process is reversed. This 
implies hysteresis is a process that exhibits path 
dependence. 

Hysteresis is a phenomenon that depends on its past 
behaviour to determine its current behaviour. In this 
context, we say hysteresis has a memory. 

Hysteresis describes a system whose output lags behind 
itself as the system input changes. 

 
An application for non-functions  
A typical discussion of non-functions is usually either the 
graph of a circle or an arbitrary curve failing the vertical line 
test, which has limited connections to real-world applica-
tions, and the main focus is usually about what is a function. 
Hysteresis loops have one particular value of the input lead-
ing to two possible values of the output. While hysteresis is 
a real application that cannot be modelled by a function, it is 
important to point out that in the exploration of hysteresis, 
the concept of a function is used. All the graphs in Figures 
1a, 1b and 3a can be described by a function. These graphs 
of functions lead to the construction of the hysteresis loops 
shown in Figures 1c and 3b. 

Inverse functions describe reversible processes (e.g., 
adding five is precisely reversed by subtracting five), while 
hysteresis is an application that motivates functions without 
inverse functions. Hysteresis loops are visual representa-
tions of physical processes that are not exactly reversible as 
discussed in the examples of freezing-thawing and thermo-
stat switching. In the case of the thermostat example, the 
presence of hysteresis  is a benefit; it keeps the thermostat 
from switching too quickly.   

 
An application for the geometry of curves 
Exploring the geometry of curves can be inspired by physi-
cal applications. Hysteresis loops can be an example for this. 
The previous discussions explained why closed curves (i.e., 
loops) form in the input-output graphs of systems that 
exhibit hysteresis. Within this, there is quite a bit to investi-

Figure 3. For the process of freezing and thawing, the depiction in (a) illustrates if freezing and thawing are processes that are 
exactly the reverse of each other, and (b) shows the case when they are not.

  (a)   (b)
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gate about the shape of hysteresis loops. For instance, self-
crossing pinched hysteresis loops, as depicted in Figure 4, 
are closed curves that are not simple. These type of hystere-
sis loops arise in engineering systems such as circuits and 
smart materials (Drinčić, Tan & Bernstein, 2011; Wang & 
Hui, 2017). The pinched hysteresis loop in Figure 4 appears 
to exhibit some symmetry along its self-crossing; however, 
this may not always be the case and hence symmetry is 
another avenue for exploration (Wang & Hui, 2017). By 
considering the physical explanation of self-crossing in hys-
teresis loops, it becomes a motivation for why it is 
worthwhile to understand geometric concepts like symmetry 
and distinguishing simple curves from non-simple ones. 
 
Additional suggestions for applications 
What has been presented in this article is a brief and modest 
discussion of hysteresis. There are many more facets to hys-
teresis worth considering, such as using hysteresis as a 
motivational example to examine the use of mathematics in 
computer programming. All the figures in this article are cre-
ated from scripts written in MATLAB, and this requires 
mathematical knowledge of time scales, graphing and differ-
ential equations. Of course, using other software is possible 

and avenues for learning include writing code to generate 
hysteresis loops. 

Another application is using hysteresis loops to inspire 
learning about differentiability and the appearance of their 
corresponding graphs since some hysteresis loops are 
smooth (e.g., Figure 4) while some have cusps (e.g., Figure 
2b). Other topics that can be investigated more deeply are 
defining hysteresis, modelling hysteresis in differential 
equations, historical perspectives of the first observations of 
hysteresis, and reflecting on the use of authentic practical 
applications as a tool for learning mathematics. 
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Figure 4. A pinched hysteresis loop, which is in the shape of 
a closed curve that is not simple.

Set of geometric solids made of boxwood, English, c. 1700. History of Science Museum, Oxford.
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