Communications

Standing on the shoulders of
giants: a response to Foster

ANDREA MAFFIA

Colin Foster, in issue 42(3), has presented a very interesting
but quite provoking point of view to which I would like to
respond in this short communication. I will not be very orig-
inal in this contribution; my aim is only that of recalling
some important considerations that I learnt from reading
other researchers’ work. Hence, I will mainly draw on the
work of others, ‘giants’ of mathematics education, on whose
shoulders we all stand.

A very hazardous pursuit

In his article, Foster presents a representation of multiplica-
tion based on the Cartesian plane. As he relates, his research
group is building a curriculum (and related materials) seek-
ing coherence in representations. Such coherence is
achieved by “prioritising a single representation of num-
ber—the number line” (p. 21). The author recognises that
such seeking of coherence could be considered detrimental
but supports his position by stating that, “It is possible that
multiple representations [...] could result in an overall less
powerful picture for the student than might be obtained with
one carefully-chosen representation” (p. 25).

The representation presented by Foster appears to be a
good model for multiplication in the sense of Fischbein
(1987). Indeed, it is self-consistent and, at the same time, is
easily relatable to other models of multiplication. As Foster
argues, it has the potential for what Fischbein calls heuristic
efficacy and it may be intuitive because it draws on the num-
ber line. Hence, I am not claiming in any way that the
chosen representation is not as good as others. However, [
take a semiotic point of view to argue that Foster’s assump-
tion, that multiple representations may result in some sort of
confusion, is inadmissible. The very core of my argument
resides in what I consider a mathematical object to be. In any
theory of semiosis, the representation (or sign, representa-
men, zeichen, etc.) is distinguished from what is represented
(or object, reference, gegenstand, etc.). In decades of
research about mathematics teaching and learning, Ray-
mond Duval (e.g., 2006) has wondered how students can
“distinguish the represented object from the semiotic repre-
sentation used if they cannot get access to the mathematical
object apart from the semiotic representations” (p. 107).
According to him, the dissociation between the representa-
tion and the object happens only when non-congruent
registers are confronted. It is not just a matter of choosing
the most suitable representation (whatever this may mean).
If they are not confronted with several representations, the

students will never distinguish the object from its represen-
tation; learning about the object (multiplication in this case)
will never happen. Based on Duval’s work and my research,
I believe not only that “presenting different models to pupils
is relevant, but also that the operation of putting in relation
the models has the potential to be particularly productive”
(Maffia & Mariotti, 2018, p. 35).
As Duval (2006) states:

Too often, investigations focus on what the right repre-
sentations are or what the most accessible register
would be in order to make students truly understand
and use some particular mathematical knowledge. With
such concern of this type teaching goes no further than
a surface level. (p. 128)

Of course, interpreting this quotation requires specifying what
a ‘surface’ or a ‘deep’ level is, and this depends on what we
consider as successful teaching/learning. In the conclusion of
his article, Foster contrasts “trying to find the quickest, easiest
way to address each narrow skill” with “the long-term invest-
ment of building the most powerfully useful and coherent
models” (p. 26), and he takes the second position. However,
what “powerfully useful” may mean must be addressed. In
this section I argued that privileging one representation is haz-
ardous (using Duval’s words). In the next section, I will state
that the concept of ‘usefulness’ may change considerably
when we consider not only individual learning but frame the
teaching/learning of mathematics as a cultural endeavour—
which means considering ethnomathematics.

Mathematics as culture

Addressing the usefulness of teaching/learning requires
wondering what we teach mathematics for. According to the
answer we provide, we may distinguish mathematical edu-
cation from mathematical training (Bishop, 1988). As noted
by Ubiratan D’ Ambrosio (1994), “we are under pressure
from educational authorities, community leaders, parents,
and students themselves to get ‘better results’ to improve our
marks, to be better in our marksmanship” (p. 444). I would
classify the classroom activity realised for these purposes as
mathematical training. While I am strongly convinced that
Foster does not want to emphasise these activities, I see the
risk of diverting in that direction when looking for the most
useful unique representation for multiplication (or any other
mathematical content). This is because, by forgetting other
representations that have been shared by different popula-
tions during history, we are not considering that mathematics
is a cultural activity.

Taking the point of view of ethnomathematics means
recognising “that every cultural group generates its own ways
of explaining, understanding, and coping with reality, trans-
mits and organizes these ways into techniques [...] and
diffuses them through the group; improving and transmitting
them from generation to generation” (D’ Ambrosio, 1994,
p- 449). The cultural history of a community (comprehending
each and all individuals) allows us to understand how tech-
niques have been generated by our ancestors and then
inherited through generations. Many of the representations
that appeared in the course of the history of mathematics have
then been abandoned for others that were more useful—at that
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moment, for someone, for some purpose. This is the case for
geometry as mean of proving arithmetical theorems (e.g.,
largely used by Euclid) which has been replaced by algebraic
notations. Rectangles were the main means for representing
multiplication in the Hellenistic period, in al-Khwarizmi’s
work, and they were still used by Italian mathematicians in
medieval times. In Radford’s (2008) words “artifacts are bear-
ers of the historical cognitive activity deposited in them by
previous generations [...], in using them in the course of our
activities the subjective domain and the cultural-objective one
become imbricated into each other” (p. 451), and representa-
tions are symbolic artefacts (Rabardel, 1995) that have shaped
the mathematical activity of our ancestors and we—as mem-
bers of our own culture—should know that.

The rectangular representation that is chiefly criticised by
Foster— ‘algebra tiles’—is a cultural product and being able
to interpret it allows understanding the mathematical activity
of the past. In my research, I described how Italian fifth
graders who knew how to use and interpret rectangular rep-
resentations of multiplication were able to make sense of
Tartaglia’s original words and infer from them the definition
of prime numbers (Maffia, 2019). This was possible because
they could notice that some numbers can be only represented
as rectangles having a side that is long as the number itself.
While the same (pure) numbers were used to represent the
length of the side and the area of the rectangle, it was the dif-
ferent roles of the two measures that allowed children to
understand what a prime number was according to a mathe-
matician of another time. At least (but not only) for this
reason, I would describe the rectangular model as a power-
fully useful representation.

We certainly know that different symbolisations have
been developed in different cultures and it is very likely
that there are differences in values also [...] How
unique these values are, or how separable a technology
is from its values must also remain open questions.
(Bishop, 1988, p. 187).

To conclude, I would like to stress again how valuable the
representation proposed by Foster is, but, taking a semiotic
and ethnomathematical perspective—based on the argu-
ments presented through the giant voices of Duval,
D’Ambrosio, Radford, Bishop, and my smaller humble
one—I would strongly suggest reconsidering the pursuit of a
unique, powerful, useful representation of multiplication, to
be prioritised above all others.
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Fraction as narrative: reflection
on the conversations of Hewitt,
Pimm and Sfard

AEHEE AHN

How is mathematics different in different languages? The
conversations of Hewitt and Pimm, in issue 41(2), and
Sfard, in issue 42(1), inspired me to re-think the relations
between fractional language and fraction conceptions.
Hewitt and Pimm talked about a classroom situation in
which a Chinese teacher (called Ms Dai) accepted Figure 1b
as a match of the fraction s but rejected Figure 1a because
it is not equally partitioned. This short communication pro-
poses the idea of a fraction as a narrative, as one explanation
for the behaviour of the Chinese teacher.

Sfard discussed the teacher’s reaction with reference to
the Chinese language structure used for fractions. She sug-
gested that the teacher’s rejection was caused by Chinese
fraction language. Whereas English fractions name the prod-
uct of operations, fractions in Chinese imply actions such as
partitioning or dividing as well as the outcome. If Ms Dai’s
reactions are related to the Chinese language structure, I
wondered what it would be like if I (a Korean native) inter-
preted her reaction through a Korean lens. Like Sfard, I tried
to interpret Ms Dai’s logic based on Korean language struc-
ture by building on Sfard’s argument that fractions are
actions in Chinese.

The order of reading and writing fractions in Korean is
the same as in Chinese. The Korean words for fractions are
based on Chinese words. The meanings and the usage
of each Korean fraction word are very similar to those of
Chinese words (see Table 1).

Figure 1. Drawings used in Ms Dai’s lesson.
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Table 1.  Chinese and Korean language for fractions.
_ Chinese | Denominator - %3 (parts) - Z
Fraction (of) - Numerator
language
structure | Korean | Denominator - & (parts) - 2]
(of) - Numerator

The Korean word += (read as ‘bun’) comes from the Chi-
nese word %3 (fen) and is used as a noun and a verb with the
meaning of parts, pieces, partition, and divide, like 73". The
word does not originally imply the meaning of ‘equal’, but
in fractions it is commonly used to include the meaning of
equal partitions. The next word 2| (read as ‘ui’) is from the
Chinese character Z (zhi), and instead of being used alone,
it is used with other words as a postposition to represent the
relationship between the whole and the part, and has a simi-
lar meaning to the English word ‘of’ [1]. Pimm translated
the Chinese fraction name as ‘denominator (equal) parts of
(which) numerator’.

The evidence of the fraction names show that the Korean
and Chinese languages basically describe fractions in terms
of whole-part relations: not from part to whole but from
whole to part. In Korean, I believe whole-part thinking not
only refers to the order of considering a whole first and then
parts later. It also reflects the action process of constructing
fractions as narratives.

Fractions in Korean tell series of actions narratively. As an
example, [ am reminded of teaching fractions with visual
representations to primary school students in Korea. Firstly,
while saying (reading, writing, or thinking) a denominator
(number), I drew a rectangle on a blackboard. While saying
= or drawing a fraction horizontal line, I partitioned the rec-
tangle into several equal parts. The two actions are closely
interrelated and often performed consecutively. Next, while
saying 2|, I stressed whole-part relations between a numerator
and the whole rectangle figure I drew. Lastly, while saying a
numerator (number), I shaded some parts in the partitioned
rectangle. In a class of words, the operative description flows
from a denominator to a numerator. A denominator refers to a
whole implying unitising; = means equipartitioning; 2]
shows whole-part relations; and a numerator implies shading
or choosing parts. Every word of Korean fraction names is
linked to actions from unitising to partitioning to shading,
along with the focus shift from a whole to parts.

In terms of narrative, equal partitioning related to a
denominator sets up the context of unit fractions and is
embedded as orientation in fractional actions. In other
words, the essential first step of the narrative is equal parti-
tioning, and unit fractions involving equal partitioning
assume the initiation of the narrative. Equal partitioning pro-
vides the set-up context, then the narrative has been
completed by associating with a numerator in company with
shading or selecting actions. Labov (2006) symbolised the
most reportable event as eg and used e, for past events, such
as e-1, e_2, etc., depending on the order of the series of
events. According to the Labov’s symbolisation of narrative,
I narratively describe fractions as follows:

e Equipartitioning a whole
e-1 Shading or choosing some of equal parts
€o A fraction
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A fraction eg is a completed event and the most reportable
event. The recursive series of fractional actions precedes eo,
and equipartitioning as an initial event is the orientation of a
fraction.

Then, how does Korean fraction language compare to
English fraction language? I examined the difference by tak-
ing the example of 35 and tackling it from my view of
fractions as narrative. The English 35, commonly read as
three-fifths, makes me think of a rectangle with three
coloured areas out of a partitioned whole as an outcome or
an object, similar to the comment made by Hewitt and
Pimm. English fractions mean how much of an area is or
how many are shaded out of a whole, which is synthetic.
Whereas, in Korean 35 translates as five-parts-of-three and
makes me think of two steps: unitising and partitioning a
whole into five identical areas and then finding three parts
out of the partitioned whole. As an analytical process, a
whole is considered first and then parts can exist. The
denominator 5 provides the assumed context of equal parti-
tioning and presupposes the unit fraction !/s. Then, the
fraction 3 is completely constructed with the numerator 3.
summarise the difference visually in Figure 2.

If I interpreted Ms Dai’s rejection from my perspective,
the fraction representation that is not equally partitioned
(Figure 1a) is false. The fraction ¥s already assumes an equal
partition of a whole, but Figure 1a went wrong from the
assumed setting. Even though the outcome of shaded parts
matches the region of 35, this is unlikely to be considered
true since the first action, non-equipartitioning, is contrary to
the starting situation of the fraction narrative.

Then, I wondered about Korean teachers’ reactions. Since
the Chinese and Korean language of fractions are similar,
would Korean teachers’ reactions be similar to Ms Dai’s? In
order to see how Korean teachers react to the visual represen-
tation that is not equally partitioned, I had a talk with three
Korean primary school teachers individually. They all have
around 15 years of teaching experience in Korea. While
showing Figure 1, I asked their thinking about the images.
The question was ‘what do you think of the drawings for
%57, To tell you the result first, all the three teachers rejected
Figure 1a, as Ms Dai did. [ undertook to understand their con-
ceptions or logic, and I paid attention to where their focus on
fractions had been. One teacher (called Ms Kim) said,

This shaded part can be five = [parts] 2| [of] three [%/5]
of the figure but fractions have to be equally parti-
tioned. Some out of some equal parts. At first I thought
both are correct but soon I think thinking of only three

. 3
English | ¢

3
g 5
Korean 3

Figure 2. Fraction % in English and in Korean.



Figure 3. Fraction rectangle missing one line.

shaded parts in the rectangle focuses on the numerator
three and that overlooks the precondition of fraction
concepts equal partitioning.

Thinking of fractions as narrative, Ms Kim considered
fractions with actions from equipartitioning to shading. She
stressed equipartitioning in fraction concepts, mentioning it
three times (equally partitioned, equal parts, and equal parti-
tioning) in our short conversation. She linked partitioning
actions to a denominator and regarded a denominator as a
fundamental feature for fractions compared to a numerator.
In her logic, partitioning as a first step was wrong, thus the
representation Figure la is false. The other teachers
answered similarly to her. This shows equal partitioning is
embedded as an assumed context in Korean fractions and the
fractional actions begin from it.

Through the next step, I was able to see more clearly that
the teachers’ focus is on action process more than lines or the
results of drawing fraction representations. As a next step, 1
showed Figure 3 to the Korean teachers.

Figure 3 is an insufficient drawing that misses one line
and therefore does not clearly show the representation of the
fraction 3s. Before showing the drawing, I guessed the
Korean teachers’ answer that this is also false. They said,
however, this is a tentative state, not true or false, since they
cannot determine whether or not equipartitioning is done
properly yet. This might be what Hewitt and Pimm said in
the subtitle of their conversation: ‘true, false, or somewhere
in-between’. It might be somewhere in between true and
false. If I symbolise %5 as eg as a completed event, the lines
and shadings play a role in showing the series of events pre-
ceding the eo. The s of Figure 3, however, does not clearly
provide the initial process e-» due to the one line missing.
Missing one line makes it difficult to trace what happened
recursively. If one line is added to have equal five congruent
parts, this figure can be true, and if one line is drawn to have
non-congruent parts, this figure can be false. I cannot name
it in Korean starting with the denominator ‘five-&= (parts)-
2|(of)’, as this is not equally partitioned into five. In order to
make it %5, I might or ask students to track what action was
missing in order to set up the assumed context of the fraction
(i.e, drawing one line for equal partitions).

I have interpreted the classroom incident by Hewitt and
Pimm, built on Sfard’s view, and proposed the idea of a frac-
tion as a narrative, based on whole-part thinking in the
Korean fraction language. The Korean fractional language
shows a different understanding of fractions compared to
English: Fractions in Korean as a narrative assume equal

partitions, which leads to unit fractions as a starting point of
fraction concepts. This is how my native language shapes
the way I see the fraction world.

Note

[1] Information about the words’ meanings and the Chinese origins of
Korean come from The National Institute of the Korean Language, . I also
give details based on my Korean knowledge as a Korean native speaker.
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From the archives

Geoffrey Howson died on 1 November 2022. He contributed
to curriculum reforms in the UK and internationally, was
active within ICMI and is well known for his contributions
to the history of mathematics education. The following is an
edited excerpt from his 1984 article ‘The questions remain
the same: only the solutions change’ in FLM 4(2), 14-17.

Mathematics educators would not in general appear to have
either a great knowledge of, or even concern for, the history of
their subject. This I believe to be unfortunate for a number of
reasons. A real understanding of the position in which we find
ourselves today presupposes an understanding of how we
arrived at this position. Moreover, this lack of a knowledge of
the past can lead to a continual “reinvention of the wheel”—
there is a need for a shared stock of knowledge which
mathematics educators can take for granted and on which they
can build. Yet a facile view of history can lead to the argument
that “It has all been said before” and to despair. If we wish to
gain help and encouragement from history it is essential that
we probe more deeply and study in detail the gradual evolution
and elaboration of responses to key problems. (Thus, for exam-
ple, there is a considerable difference between our present-day
understanding of the difficulties of presenting mathematics via
a text and that of Robert Recorde in the mid-sixteenth century.
Nevertheless, Recorde succeeded in identifying some key
issues concerned with the writing of texts which will always
face the author—and the reader.) Also, it is in such studies that
we shall identify that basic “foundation” knowledge. For com-
parison we note how within the sphere of mathematics proper
it is the good expository survey article which in tracing the his-
torical development of a subject effectively defines what has
now become the professional’s basic knowledge within that
particular area. Mathematicians appear to have accepted this
fact, and are beginning to recognise how highly the ability to
write comprehensive and comprehensible survey articles
should be ranked. Mathematics educators have yet to come to
terms with the idea.

[...]

As if to reassure us that everything in education has been
said or done before, it must be remarked that in the past not
a great deal of attention has been paid to the reasons which
people might have for learning mathematics, and what place
students see for it within their “general education” or their
process of “growing up.”
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Robert Recorde, writing in 1551, clearly distinguished
between two types of reader who might use his geometry
text. There were those “who study principally for learning”
and those who wished to acquire the knowledge, for some
purpose or other, but who had “no time to travail [work] for
exacter knowledge”[1]. In a sense Recorde roughly distin-
guishes between those who, to use Mellin-Olsen’s (1981)
terms, wish to learn because they attach personal signifi-
cance to what is being presented to them, and those who see
such knowledge as merely instrumental in attaining other,
possibly non-mathematical, goals. Recorde, however, was
not writing primarily for the school pupil, but for the maturer
student. It is highly unlikely that Shakespeare would have
chanced upon his works at the school he attended in Strat-
ford-upon-Avon. Yet he, too, had something to say on
motivation—or rather the lack of it—when he described “the
whining school-boy, with his satchel and shining morning
face, creeping like a snail unwillingly to school” [2].

For several centuries motivation was provided within the
schools primarily by the use of the birch and rod. There was
also the power of expulsion—Arnold, the famed nineteenth-
century headmaster of Rugby School explained that, “Till a
man learns that the first, second and third duty of a school-
master is to get rid of unpromising subjects [i.e. pupils], a
great public school will never be what it might be and what
it ought to be” (Ballard, 1969, p. 29). Today’s teachers must
smile ruefully at such advice—the “unpromising” cannot be
removed from state schools quite so easily. The birch, which
served Arnold well but which was never very successful in
meeting its metaphorical ends—for often riots erupted in the
schools and on occasions had to be quelled by the army—
has in the past century been displaced as the prime motivator
by the examination. Vast and complicated examination sys-
tems have been established, educational ladders have been
erected, and meritocracies founded on systems where suc-
cess has frequently been dependent on passing
examinations, usually with a mathematical component. In
expanding systems, with respect to both educational oppor-
tunities and subsequent occupational rewards, the
examination has proved a very powerful motivator indeed.
Now, however, that period of historical growth appears to be
coming to an end—at least, so far as the West is concerned.
A motivational vacuum is developing for many students
within those educational systems which offer universal sec-
ondary education. For the first time it is becoming
imperative to distinguish carefully between two questions.
The first, asked by society, is What can teaching mathemat-
ics contribute to a person’s general education?; the second,
asked by the student, is What can learning mathematics con-
tribute to my personal growth?

Editor’s notes

[1] T have been unable to trace this quotation. I assume it is somewhere in

the Preface to Recorde’s ‘The Pathway to Knowledg, containing the First

Principles of Geometry’ which is unpaginated and difficult to read.

[2] From Jaques’ ‘Seven ages of man’ monologue in ‘As You Like It Act I

Scene VIIL.
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Jeremy Kilpatrick died on 17 September 2022. His contribu-
tions to mathematics education are too numerous to list here.
Suffice to say he was awarded the 2007 Felix Klein Medal
and was a member of the FLM Advisory Board for twenty-
three years, 1980-2003. The following is an edited version
of his 1984 short communication on the theme ‘Research
problems in mathematics education’ in FLM 4(1), 45-46. It
was written in response to a request by David Wheeler for
suggestions of problems that might be the focus of mathe-
matics education, akin to Hilbert’s problems posed in his
address to the IMU in 1900.

You undoubtedly know that when the program committee
for ICME 4 invited Freudenthal to be a plenary speaker at
Berkeley in 1980, their hope and expectation was that he
might attempt a Hilbertian list for our field. He didn’t, and
I’ve about decided that such a list doesn’t make sense for
mathematics education since our problems are never clearly
defined, let alone solved. Each generation of mathematics
educators ends up wrestling with many of the same prob-
lems the preceding generations thought they had “solved”,
and I think that’s likely to be a permanent condition of our
field, not simply a product of our limited history and our
lack of agreed-on criteria for what problems are “solvable”.
We don’t solve problems of mathematics education, we inter
them. Like Dracula, they come back to haunt us because we
never quite manage to put a stake through their heart.

Nevertheless, I have attempted to define three problems
that, even if not well expressed or solvable, seem to me to be
central to our field. All three problems are at the interface
between curriculum and instruction.

The first problem concerns skills and “automaticity of
response”. One reason mathematics teachers provide “drill and
practice” for pupils is that they want the pupils to be able to
respond automatically to certain questions (e.g., what is the
product of 5 and 9?). The argument is that, when such
responses are automatic, the pupil’s attention is free for consid-
eration of more complex questions (e.g., do I next add the
remaining number or multiply by it?) In the January [1983]
issue of the Journal for Research in Mathematics Education,
Bob Gagné argues that “automaticity of skills” has been under-
valued by mathematics educators. One can ask, however, what
price automaticity? Les Steffe and Rick Blake, in the May
JRME, contend that too great a stress on automatic responses
is likely to leave pupils confused as to the meaning of what
they are doing. It’s an old debate—how are “meaning” and
“automaticity” to be orchestrated? Should one teach for auto-
maticity and let meaning follow—running the risk of finding
what Kath Hart found in the CSMS project with respect to ratio
and proportion: “No evidence in this topic of rules learned and
repeated with understanding” (JRME, March 1983, p. 124)?
Should one teach for meaning, and let automaticity follow—as
some proponents of the “new math” advocated? Or should one
phrase the issue as William Brownell did in the title of his 1956
Arithmetic Teacher article: “Meaning and Skill—Maintaining
the Balance™? The Hilbertian problem might be posed as fol-
lows: For each skill in the school mathematics curriculum,
what level of automaticity is optimal for subsequent use of that



skill, and how can the skill be made meaningful without
inhibiting automaticity? Behind this problem is the old joke in
which the centipede becomes selfconscious about where he
puts his feet and then trips himself up. Certain skills need to be
brought to consciousness—so they can be understood and con-
trolled more precisely—and then made automatic. We know
something about how this might be done in training pilots or
coaching athletes; do those principles transfer to the mathe-
matics class?

The second problem concerns the hierarchical view of math-
ematics learning that many people have adopted—how does it
affect mathematics teaching? Jere Brophy, an educational psy-
chologist at Michigan State, was quoted recently as saying that
mathematics educators are misguided who believe that, because
calculators are so easily available, we can drop from the school
mathematics curriculum the multiplication of numbers with
more than two digits. Brophy argues that “performance must be
perfect on low-level objectives if success on higher-level objec-
tives is to be reasonably expected” (Notes and News, Institute
for Teaching, Michigan State University, 25 February 1983,
p. 3). Leaving aside the question of what it might mean to drop
a certain kind of multiplication from the curriculum, let us con-
sider Brophy’s argument for putting the low-level spinach
before the high-level dessert. Certainly, many teachers of math-
ematics have bought the morality and good sense of this
argument. But where is it written that low-level must or should
come before high- level? Zoltan Dienes once broached what he
called the “deep-end hypothesis”—the idea that learning might
be improved if pupils were thrown in at the deep end of a sub-
ject, and compelled to sink or swim, rather than being helped
along from the shallow end. The Hilbertian problem might be
something like: What are the effects on learning if instruction is
aimed at the attainment of certain “higher-level” objectives
given imperfect attainment of related “low-level” objectives?
This formulation of the problem begs the question of how one
establishes whether and how two objectives are related. It also
neglects the issue cited at the beginning of this paragraph—
what are the effects on teaching of this low-level/high-level
view of objectives?

The third problem concerns transfer. Everyone knows that
Thorndike et al. showed conclusively that the study of math-
ematics doesn’t make pupils better reasoners, yet teachers
remain convinced of its power to do so. One way to reinter-
pret Thorndike’s research is to suggest that perhaps his
instruments were insensitive to certain changes that studying
mathematics makes in how pupils think. If the teachers are
right and Thorndike wrong, it might be worthwhile to
develop more sensitive instruments for measuring reason-
ing—and other intellectual abilities likely to be affected by
mathematics learning. The Hilbertian problem: What gen-
eral intellectual abilities are affected by the study of
mathematics, and how are they affected? Stated this way, the
problem is too broad to be addressed reasonably, but pieces
of the problem might be amenable to attack.

I hope this response to your request for problems hasn’t
affirmed the old saw that a fool can ask more questions than
a wise man can answer. Better, perhaps, is James Thurber’s
observation: It’s better to know some of the questions than
all of the answers. Best wishes to you in orchestrating the
responses you get.

Heinrich Bauersfeld died on 1 December 2022. He was one of
the founding directors of the Research Institute for Mathemat-
ics Education at Bielefeld University and a pioneer in
including social interactions in mathematics education
research. In collaboration with Paul Cobb, Terry Wood and
Erna Yackel he sought to integrate psychological and social
perspectives on mathematics learning. He was a member of
the original FLM Advisory Board, serving from 1980-1990.
The following is an edited excerpt from his article ‘Integrating
theories for mathematics education’ in FLM 12(2), 19-28.

An attempt at integration

If the kingpin of cognition is its capacity for bringing
forth meaning, then information is not pre-established
as a given order, but it amounts to regularities that
emerge from the cognitive activities themselves
(Varela, 1990, p. 121/66)

The outlined positions are very near to the radical construc-
tivist principle (von Glasersfeld, 1991), as well as to
fundamental pragmatic linguists’ or social interactionists’
theses (Mehan and Wood, 1975; Walkerdine, 1988; Coulter,
1990), to fundamentals of discourse analysis (Cazden 1986),
and to certain perspectives of systems theory approaches
(Luhmann, 1990; Maturana and Varela, 1986). One cannot
expect to identify clear boundaries for the region of conver-
gence at this level of abstractness. But it appears to be
possible to enlist a few shared core convictions in this area.
(The descriptors used will present a mixture, just because it is
impossible to describe the deficient parts of an approach with
the specific “language game” of the very same approach.)

3.1 Learning is a process of personal life forming, a
process of an interactive adapting to a culture through active
participation (which in parallel also produces and develops
the culture itself), rather than a transmission of norms,
knowledge and objectified items.

3.2 Meaning lies with the use of words, sentences, or
signs and symbols rather than in the related sounds, signs or
pictures, or even in a related set of such items.

3.3 Languaging (the French term parole as distinct from
that of langage) is a social practice, serving in communica-
tion for pointing at shared experiences and for orientation in
the same culture, rather than as an instrument for the direct
transportation of sense or as a carrier of attached meanings.

3.4 Knowing or remembering something denotes an actual
activation of options from experienced actions rather than a
storable, treatable, and retrievable object-like item, called
knowledge, from a loft, called memory.

3.5 Mathematising is a practice based on social conven-
tions rather than the applying of an universally applicable set
of eternal truths; according to Davis and Hersh (1980), this
holds for mathematics itself.

3.6 (Internal) Representations are individual constructs,
emerging through social interaction as a viable balance
between the person’s actual interests and her realised con-
straints, rather than an internal one-to-one mapping of
something pre-given or a fitting re-construction of “the”
world.

35



3.7 Using visualisations and embodiments with the
related intention of using them as didactical means depends
on taken-as-shared social conventions in classroom practice
rather than on a plain reading or the discovering of inherent
or inbuilt mathematical structures and meanings.

3.8 Teaching is the attempt to organise an interactive and
reflexive process, with the teacher engaging in a constantly
continuing and mutual differentiating and actualising of
activities with the students, and thus the establishing and
maintaining of a classroom “culture”, rather than the trans-
mission, introduction, or even re-discovery of pre-given and
objectively codified knowledge.

The notion of an “integrating perspective” in the following
will refer to this set of core convictions. It is quite challeng-
ing to extend such an integrated perspective into possible
didactical considerations—no inferences, clearly, since what
we have mostly refers to single theories, if anything at all. At
least in the interest of students and teachers, such an attempt
appears to be as necessary as the bustling discussion of com-
patibilities, of the drawing of boundaries, and of attempting
to decide the relative dominance of one model over another.

[.]

Language, languaging and the teacher

In a narrow interchange with the described attitudes, views
about language will also have to undergo change. “Learning
how to use language involves both learning the culture and
learning how to express intentions in congruence with the
culture” (Bruner & Haste, 1987, p 89). And “one has to con-
clude that the subtle and systematic basis upon which
linguistic reference itself rests must reflect a natural organi-
zation of mind, one into which we grow through experience
rather than one we achieve by learning” (p. 88).

For many teachers the strength and the generalisability of
mathematics is inseparable from the strictness and the preci-
sion of the related verbal or other symbolic representations.
Similar to priests who celebrate the esoteric language game
of their caste, many mathematics teachers permanently insist
on saying things as precisely as possible. An observer may
find the teacher insists on this technical language. For the
students, the emphasis functions as a requirement to say it
exactly “as she/he said it”.

One may wonder whether many teachers “have it” at all in
any other way. That is to say, they know how to talk about
“it” in the terminology of the accepted language game but
there seems to be not much more beyond this, as the limited
availability in other “contexts”, the difficulties and shakiness
of use in other situations suggests, and is also indicated by
an inability to find adequate metaphors for the issues.

To be fair, nobody has trained them in the initial phases to
speak about the intended subject matter in everyday lan-
guage, to “point at” similar issues, etc. (Cognitivists may
prefer descriptions like: they cannot “translate”, or “say it in
other words”, they cannot “embed” or “visualise”, or “refer
it to”, thus treating what is meant as an object rather than as
something emerging from the actually situated processes.) In
consequence, many mathematics teachers are quite rigid in
their verbal aspirations and their related evaluations of stu-
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dents’ utterances. But they are quite permissive in the social
organisation of their class. Under the integrating perspective
the opposite way round appears to be a more promising one:
to accept and encourage students’ mathematical utterances
within very wide limits with respect to how it is said, as long
as a serious background (reason, argument, efc.) can be iden-
tified. But to be rigid about keeping the social regulations,
namely, insisting on listening to others’ inventions and
explanations, keeping turn-taking order, taking seriously the
others’ serious contributions, etc.

Analysing many videotapes has convinced me of the all-
too-general poverty of classroom communication with respect
to this view (in many countries, by the way). If the culture the
students inhabit in the classroom is poor in languaging and in
presenting models of what is wanted, if it is lacking incentives
and challenges, if it is more a non-transparent celebration of
technical language rather than a participation in a scaffolding
culture, and if it is neither providing resistance to the critical
mind nor further orientation for the keen-minded, what then
are we to expect from our schools?
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Hysteresis as an authentic
mathematics application

AMENDA N. CHOW

Integrating authentic applications in mathematics teaching is
an important part of student learning because it supports
classroom participation, engagement with assessments and
greater retention, which leads to an overall increased interest
in the subject (Campbell, Patterson, Busch-Vishniac &
Kibler, 2008). To support this, I suggest a real-world practi-
cal application called ‘hysteresis’ as a motivation for
learning a variety of mathematics topics. Hysteresis is well-
known in engineering and physics because of its connections
to physical processes; however, it is not normally discussed
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Figure 1. A thermostat with 0 as its off state and 1 as its on state, and its state dependent on the temperature. (a) The thermostat
switching from on to off when the temperature is 0. (b) The thermostat switching from off to on when the temperature
is 5. (c) The dynamics shown in (a) and (b) plotted together.

in mathematics education. Hysteresis provides an example
that is not a function, and such ‘non-examples’ are often
neglected in the context of teaching functions.

An introduction to hysteresis

Consider the dynamics of a thermostat, which is either in a
state of being off or in a state of being on. Let O represent its
off state and 1 represent its on state. In this example, con-
sider the thermostat switching on or off based on the
temperature of a refrigerator. Suppose the thermostat turns
the refrigerator off if the temperature is less than 0 degrees
Celsius. This behaviour is shown in Figure 1a. On the other
hand, suppose the thermostat switches from off to on when
the temperature is 5 degrees, as depicted in Figure 1b. This
means the path from off to on is different from on to off; that
is, the dynamics of the thermostat are path dependent. This
path dependence creates a loop as shown in Figure lc. This
loop is known as a hysteresis loop, and we say the perfor-
mance of the thermostat exhibits hysteresis.

In the case of the thermostat, the presence of hysteresis is a
benefit. Consider Figure 1a, which without the presence of
hysteresis would mean any slight temperature change above
or below zero causes the thermostat to frequently switch off
and on. This would quickly wear down the components of the
thermostat, and hence, the presence of hysteresis improves
the performance and quality of a thermostat. Furthermore, in
Figure 1c, the state of the thermostat may be O or 1 for tem-
perature values between 0 and 5. That is, for a temperature

(a)

output

input

between 0 and 5, there are two possibilities, namely 0 and 1,
so this is not a function. Instead, in the presence of hysteresis,
the state of the thermostat is determined by knowing whether
it was off or on previously. This dependence on the past is
known as the memory effect of hysteresis.

In the example of the thermostat, hysteresis appears in a
human-made device. Hysteresis is more often observed in
natural processes such as freezing-thawing, magnetism, pop-
ulation dynamics, potential energy, and ecosystem changes
(Aiki & Minchev 2005; Berdugo, Vidiella, Solé & Maestre,
2022; Morris, 2011; Mukhamadullina, Kornev & Alimov,
1998; Noori, 2014). Since hysteresis is a phenomenon that
occurs in physical systems, it is commonly modelled by a
differential equation, where x(t) € R is the solution to the
differential equation,

&(t) = f(a(t), u(t))

t € R is time, and fis a continuous and differentiable map-
ping of x and u. In the context of determining whether a
system exhibits hysteresis, u(f) € R is the input of the sys-
tem, and it affects the behaviour of x(7), which is called the
output. The relationship between the input and output is
given by the equation above. The plane used to depict a hys-
teresis loop is an input-output graph as shown in Figure 2.
The horizontal axis has been labelled ‘input’ and the vertical
axis has been labelled ‘output’, but they can also be symbol-
ized by u and x, respectively. The specific values of the input

(b)

output

input

Figure 2. (a) Input-output graph displaying no looping behaviour. (b) Input-output graph displaying a hysteresis loop.
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Figure 3. For the process of freezing and thawing, the depiction in (a) illustrates if freezing and thawing are processes that are
exactly the reverse of each other, and (b) shows the case when they are not.

and output do not add to the understanding of the discus-
sions presented, so numerical scales along the axes have
been omitted.

The thermostat example is discrete in that values of its
output are either 1 or 0, and hence not a suitable solution to
the equation above, which has continuous solutions for x(z).
For a continuous example, consider the process of water
freezing and thawing. We can tell how frozen water is by
measuring its flow rate, which varies continuously. The out-
put is the flow rate of the water, and this depends on the
temperature, which is the input. The input-output graph of
these dynamics is shown in Figure 3a if freezing is exactly
the reverse of thawing. In other words, the frozen object as it
is thawing has initial frozen state labelled by F, and this state
(measured by the flow rate of the water, which is the output)
changes as the input (i.e., temperature) increases until reach-
ing its final thawed state denoted by W, and reversing these
dynamics, freezing is the same curve in Figure 3a but from
Wto F if freezing is exactly the reverse of thawing.

It has been shown that freezing is not exactly the reverse of
thawing in Mukhamadullina, Kornev & Alimov (1998). This
may be due to external factors such as different evaporation
rates of water between freezing and thawing, and the fact
water expands when it freezes. As freezing is not exactly the
reverse of thawing, the curve from F to W for thawing cannot
be used to represent freezing from Wto F. Figure 3b depicts
the difference from F to W (in black) as compared with from
Wto F (in gray). These dynamics result in a hysteresis loop,
and we say the freezing-thawing process exhibits hysteresis.
In the examples of freezing and thawing, and the perfor-
mance of the thermostat, there is a repetition between hot and
cold temperatures that triggers each process to cycle over
time. This repetitive nature is needed to test for hysteresis in
a physical system, and consequently, the input is a periodic
function (e.g., u(t) = sin(t) or u(r) = 0.1cos(2¢)). Additional
details about input-output graphs for hysteresis loops can be
found in Morris (2011) and Oh & Bernstein (2005).

Despite the differences in shapes of hysteresis loops
observed in Figures 1c, 2b and 3b, the structure of all hys-
teresis loop has the appearance of one path lagging behind
another. This observation led to the name hysteresis because
the etymology of hysteresis means to lag behind (Morris,
2011). Path dependence, the memory effect and lagging
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offer several ways to characterize hysteresis, and they
inspire the following colloquial definitions for hysteresis.

Hysteresis is a process that follows a different path for-
ward than backward when the process is reversed. This
implies hysteresis is a process that exhibits path
dependence.

Hysteresis is a phenomenon that depends on its past
behaviour to determine its current behaviour. In this
context, we say hysteresis has a memory.

Hysteresis describes a system whose output lags behind
itself as the system input changes.

An application for non-functions

A typical discussion of non-functions is usually either the
graph of a circle or an arbitrary curve failing the vertical line
test, which has limited connections to real-world applica-
tions, and the main focus is usually about what is a function.
Hysteresis loops have one particular value of the input lead-
ing to two possible values of the output. While hysteresis is
a real application that cannot be modelled by a function, it is
important to point out that in the exploration of hysteresis,
the concept of a function is used. All the graphs in Figures
la, 1b and 3a can be described by a function. These graphs
of functions lead to the construction of the hysteresis loops
shown in Figures 1c and 3b.

Inverse functions describe reversible processes (e.g.,
adding five is precisely reversed by subtracting five), while
hysteresis is an application that motivates functions without
inverse functions. Hysteresis loops are visual representa-
tions of physical processes that are not exactly reversible as
discussed in the examples of freezing-thawing and thermo-
stat switching. In the case of the thermostat example, the
presence of hysteresis is a benefit; it keeps the thermostat
from switching too quickly.

An application for the geometry of curves

Exploring the geometry of curves can be inspired by physi-
cal applications. Hysteresis loops can be an example for this.
The previous discussions explained why closed curves (i.e.,
loops) form in the input-output graphs of systems that
exhibit hysteresis. Within this, there is quite a bit to investi-
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Figure 4. A pinched hysteresis loop, which is in the shape of
a closed curve that is not simple.

gate about the shape of hysteresis loops. For instance, self-
crossing pinched hysteresis loops, as depicted in Figure 4,
are closed curves that are not simple. These type of hystere-
sis loops arise in engineering systems such as circuits and
smart materials (Drincié, Tan & Bernstein, 2011; Wang &
Hui, 2017). The pinched hysteresis loop in Figure 4 appears
to exhibit some symmetry along its self-crossing; however,
this may not always be the case and hence symmetry is
another avenue for exploration (Wang & Hui, 2017). By
considering the physical explanation of self-crossing in hys-
teresis loops, it becomes a motivation for why it is
worthwhile to understand geometric concepts like symmetry
and distinguishing simple curves from non-simple ones.

Additional suggestions for applications

What has been presented in this article is a brief and modest
discussion of hysteresis. There are many more facets to hys-
teresis worth considering, such as using hysteresis as a
motivational example to examine the use of mathematics in
computer programming. All the figures in this article are cre-
ated from scripts written in MATLAB, and this requires
mathematical knowledge of time scales, graphing and differ-
ential equations. Of course, using other software is possible

Geometrical solid bodies

and avenues for learning include writing code to generate
hysteresis loops.

Another application is using hysteresis loops to inspire
learning about differentiability and the appearance of their
corresponding graphs since some hysteresis loops are
smooth (e.g., Figure 4) while some have cusps (e.g., Figure
2b). Other topics that can be investigated more deeply are
defining hysteresis, modelling hysteresis in differential
equations, historical perspectives of the first observations of
hysteresis, and reflecting on the use of authentic practical
applications as a tool for learning mathematics.
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