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Implication is one of the most basic structures for under-
standing mathematical truth (Rodd, 2000) and accurately
interpreting implication is essential for understanding and
producing proofs (Hoyles and Küchemann, 2002). However,
implication is also a topic that causes students serious diffi-
culties (e.g., Hoyles and Küchemann, 2002; Deloustal-
Jorrand, 2002; Durrand-Guerrier, 2003). 

One cause of students’ troubles is that the meaning of
implication is not straightforward; psychologists and mathe-
matics educators have observed that different conceptions of
implication are used in different contexts (e.g., Deloustal-
Jorrand, 2002; Durrand-Guerrier, 2003). For instance,
Mitchell (1962) defines material implication as part of
propositional logic; “if p, then q” is true whenever the con-
sequent q is true or the antecedent p is false. Mitchell also
defines a hypothetical proposition to only assert the conse-
quent q is true when the antecedent p is realized; cases
where p is false are irrelevant and ignored. It has been
argued that while the material conception of implication is
the one most commonly used in formal mathematics, the lat-
ter conception actually plays a more important role in school
mathematics (Holyes and Küchemann, 2002).

Each of the schemes described above is useful for deter-
mining whether or not an implication is true. The purpose of
this article is to argue that, when reading a proof, one needs
to determine not only whether each implication it uses is
true, but also whether these implications are warranted.
Specifically, we will: 

1. define and illustrate what we mean by a warranted
implication

2. argue that this theoretical construct is useful for
conceptualizing the way in which individuals
understand and validate mathematical proofs

3. maintain that the skill of inferring and evaluating
warrants when validating proofs should be taught
to students.

Mathematicians’ behavior while judging
whether a given proof is valid
Our investigations into the nature of implication began with
the following observation. Consider the statement:

If 7 is prime, then 1007 is prime.

Direct computation can be used to show that 1007 is prime.
Hence, this statement is true using a material conception of
implication. Now consider the following argument that pur-
ports to prove that 1007 is prime.

Proof. 7 is prime.

If 7 is prime, then 1007 is prime.

Therefore, 1007 is prime.

We presented this argument to two mathematicians who reg-
ularly taught transition-to-proof courses and observed them
as they determined whether it constitutes a valid proof. Both
rejected the proof as invalid.  Relevant transcripts of their
responses are provided below [1]: 

P1: The second statement seems to be using some gen-
eral principle. Which it hasn’t stated what the
general principle is. The reader is left to guess what
the general principle is. So I guess the point is that
the statement, “if 7 is prime then 1007 is prime” is
logically valid. I don’t like if-then statements of this
form. The point is that, implicit in that, when we
use that in a proof, there’s really some general prin-
ciple we have in mind. So for instance like, “if x is
prime, then 1000 + x is prime”. That general prin-
ciple is false. So the question would be, what is the
general principle that you are using to deduce that?
And I can’t think of one.

P2: [reading the proof] “7 is prime”, I believe that
line. “If 7 is prime, then 1007 is prime” – I have
no reason to believe that line yet. In the absence of
implication, I certainly can’t make the inference.
Why would I believe that the sum of 1000 and 7
should be prime if 7 is prime? I’ve no idea. […]

Okay, I’m going to believe that the “If 7 is prime,
then 1007 is prime” is true. If I believe that it is
true, then I would believe the conclusion. [The
implication is] valid, but not informative.

We also presented the same mathematicians with the follow-
ing argument purporting to prove that (√n) → ∞ as n → ∞.

Proof. We know that if a, b, and m are positive numbers
and a < b, then am < bm.

So a < b ⇒ √a < √b, for all positive a and b. 

For all natural numbers n, n > 0 and n + 1 > n, so √n <
√n + 1.

So (√n) → ∞ as n → ∞ as required.

Excerpts from the mathematicians’ comments while read-
ing this proof follow:

P1: I see. So I mean there’s a problem that a monotone
sequence does not necessarily tend to infinity. That’s
certainly missing […] I think it’s invalid. […]
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I mean the statement [the last line of the argu-
ment] is true […] Again there is a general
principle, which you know you always [are using]
in deducing the next statement. You are using a
general principle that is either a logical principle
or some theorem that you are supposed to know
[…] Now this [the last line of the argument]
appears to be invoking a false general principle.

P2: [reading the argument] “So square root of n
approaches infinity as n approaches infinity as
required”. Not shown. There are lots of increasing
sequences that do not approach infinity. […] All
that I believe is that it’s shown that the sequence
square root n is monotone increasing, and in fact
it’s strictly monotone increasing. But even that’s
not enough to have it approach plus infinity.

There are important commonalities in the mathematicians’
behaviors that we would like to emphasize. First, when the
mathematicians came to the assertion “If 7 is prime, then
1007 is prime”, they did not appear to be initially concerned
with whether this implication was true. Rather, they focused
their attention on what general principle the author of the
proof was using to deduce that 1007 is prime from the fact
that 7 is prime. Since no such principle was explicitly given,
both mathematicians attempted to infer such a principle
(e.g., if x is prime, then 1000 + x is prime). As it seemed
that no valid principle was available, both rejected the proof
as invalid, even though they believed the implication was
logically true. 

Likewise, both mathematicians rejected the second proof
because they inferred that the author implicitly used the fact,
“If a sequence is strictly increasing, it diverges to infinity”,
which is invalid. 

In short, when reading an implication in the context of a
proof, the mathematicians were not only concerned with
whether the implication was true, but also whether the impli-
cation was warranted – i.e., whether there was a legitimate
mathematical reason for asserting that the conclusion of the
implication was a consequence of its antecedent. Since a
warrant was not explicitly provided in either of these proofs,
the mathematicians attempted to infer an appropriate one.
In each case, the mathematicians did not find a satisfactory
warrant, and this led them to reject each proof as invalid.

Framework for comparing interpretations of
implication
In this section, we will discuss the differences between eval-
uating the truth of an implication and determining whether
or not an implication is warranted. To do so, we will use
Toulmin’s model of argumentation (Toulmin, 1969). Toul-
min’s model specifies what features one should attend to in
evaluating the acceptability of a scientific argument.
Krummheuer (1995) introduced this model to researchers
in mathematics education as a way to understand and eval-
uate informal mathematical arguments and formal proofs.
We argue that there is a qualitative difference between what
one should attend to in evaluating whether an implication is
true and in determining whether an implication is valid, and

we will use Toulmin’s model of argumentation to make these
differences clear.

Toulmin’s model of argumentation

According to Toulmin (1969), an argumentation consists of
at least three essential parts called the core of the argument:
the data, the conclusion, and the warrant. When one pre-
sents an argument, one is trying to convince an audience of
a specific assertion. In Toulmin’s framework (see Figure 1),
this assertion is referred to as the conclusion. To support
the conclusion, the presenter typically puts forth evidence or
data. The presenter’s explanation for why the data necessi-
tate the conclusion is referred to as the warrant. At this
stage, the audience can accept the data but reject the expla-
nation that the data establishes the conclusion – in other
words, the authority of the warrant can be challenged. If
this occurs, the presenter is required to present additional
backing to justify why the warrant, and therefore the core
of the argument, is valid.

Material implication and truth

Using a material conception of implication, a statement of
the form, “if p, then q” is equivalent to stating “not p or q”.
Hence, when one is asked to verify such a proposition, one
needs to demonstrate either that q is true or that p is false.
In Toulmin’s scheme, the statement “if p, then q” itself is the
conclusion. The data to support this conclusion can either be
“p is false” or “q is true”. The warrant for this statement is
the formal logical equivalence between the statements “if
p, then q” and “not p or q”. (Obviously the situation is more
complex for quantified conditional statements, such as, “For
every integer n, if n is odd, then n2 is odd”. An analysis of

Figure 1: Toulmin’s argumentation model.
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what is needed to satisfy this type of statement is given in
Durrand-Guerrier (2003)).

Using this material conception, the example given in the
previous section, “If 7 is prime, then 1007 is prime” is itself
the conclusion. The data is “1007 is prime”. The warrant is
“If q is true, then ‘If p, then q’ is true” (see Figure 2 for a dia-
gram illustrating this argument).

There are important limitations in evaluating implications
in this manner.  In practice, and especially in proof writing,
implications are often presented to convince the audience
that the conclusion of the implication follows as a conse-
quence of its antecedent. However, when determining the
truth-value of a material implication, one does not consider
any relationship between its antecedent and conclusion.
Indeed, a statement of the form, “If p, then 1007 is prime”,
will be true for any statement p, regardless of the truth value
of p and regardless of any direct or indirect relationship
between p and the fact that 1007 is prime. 

Warranted implication and validity

Recall that the mathematicians rejected our first proof
because of the assertion, “If 7 is prime, then 1007 is prime”.
The mathematicians did not argue that this implication was
false – on the contrary, they averred that it was logically true.
Rather, the fault that they found with this implication was
that the general principle used to deduce its conclusion from
its antecedent was invalid.

We use Toulmin’s scheme to frame this in the following
way. When one evaluates whether the implication “if p, then
q” is warranted, p is seen as the data and q as the conclusion.
If no justification is explicitly given for drawing this con-
clusion on the basis of this data, the reader is left to infer a
warrant. In determining whether “if p, then q” is warranted,
the reader must not only evaluate the truth of p and q, but
also judge the soundness of this possibly inferred warrant. In
the case of “if 7 is prime, then 1007 is prime”, the data is “7
is prime” and the conclusion is “1007 is prime”. One of the
mathematicians that we spoke with (quite sensibly) inferred
that the prover’s warrant in this case was, “If x is prime, then
1000 + x is prime” (see Figure 3 for a diagram illustrating
this argumentation). Of course, this warrant is invalid (e.g.,
5 is prime, but 1005 is not), leading the mathematicians to
reject the proof that depended upon this statement.

Using warranted implications to discuss
understanding and validation of proofs
To fully understand a mathematical theorem, Rodd (2000)
argues that it is not sufficient simply to believe the theorem
is true. One must also have a legitimate mathematical justi-
fication for this belief. In the mathematical community and
advanced mathematics courses, such justifications usually
take the form of formal proofs. To be fully convinced that a
proof establishes that a theorem is true, an individual must
have the ability to distinguish between arguments that prove
the statement in question and arguments that do not. Selden
and Selden (2003) define validation as the act of judging
whether an argument constitutes a legitimate proof of a
statement (i.e., whether a proof is valid). These authors
stress that the ability to validate proofs is critically important
for both mathematicians and students of mathematics. If an
individual cannot reliably determine if an argument proves a
theorem, some other statement, or nothing at all, that argu-
ment cannot legitimately convince the individual that the
theorem is true (cf. , Selden and Selden, 1995). In this sec-
tion, we argue that to determine whether or not the proof is
valid, it is necessary to consider whether the implications
used in the proof are warranted.

The inadequacy of material implication for proof vali-
dation

To illustrate the inadequacy of using a material conception
of implication in validating proofs, consider the following
two argumentations:

Argumentation 1: Since x3 and x2 are continuous func-
tions, x3 + x2 is a continuous function.

Argumentation 2: Since x3 and x2 are continuous func-
tions, x3/x2 = x is a continuous function.

We claim that the first argumentation would be permissible
for a student in a real analysis course to use in a proof
(assuming that it has been established that the functions f(x)
= x3 and g(x) = x2 are continuous), while the second argu-
mentation would not. However, when using a material
conception of implication, it is difficult to see why we
should favor one argumentation over the other. In our view,
each hinges on the acceptance of the following respective
implications, which have nearly identical formal structure:

Figure 2: An argumentation of the material implication, “If 7
is prime, then 1007 is prime”.

Figure 3: An argumentation of the causal implication, “If 7 is
prime, then 1007 is prime”.
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Implication 1: If x3 and x2 are continuous functions,
then x3 + x2 is a continuous function.

Implication 2: If x3 and x2 are continuous functions,
then x3/x2 = x is a continuous function.

In both implications, the antecedent and consequent are true.
Further, it is most likely that neither implication has been explic-
itly proved by the professor in their lectures or by the students in
their prior work. From a strictly logical perspective, differences
in their acceptability are difficult to distinguish. [2] 

Our framework highlights the differences between these
implications. A sensible inferred warrant for the first impli-
cation would be that, “the sum of two continuous functions
is continuous”. As this warrant is an established theorem in
real analysis, the first implication is a warranted implication. 

The warrant for the second implication appears to be, “If
f(x) and g(x) are continuous, then (f/g)(x) is a continuous
function”. This warrant is not true (e.g., f(x) = x and g(x) = x2

are both continuous, but (f/g)(x) = 1/x is not). Hence, the sec-
ond implication is not warranted, and it is this that makes the
argumentation unacceptable in a proof.

A framework for validating proofs

Many proofs in mathematics journals and textbooks are pre-
sented as a series of assertions. Often it is the case that some
of these assertions are not explicitly justified [3]. In order
to establish that a particular assertion in a proof is valid, we
argue that the reader should determine whether the implica-
tion, “If (a subset of the previous assertions in the proof),
then (new assertion)”, is warranted. If a warrant for this
statement is not explicitly provided, the reader is left to infer
it. Consider the following generic proof, where A, B, C, and
D represent mathematical assertions.

Statement. If A, then D.

Proof. Assume A.

B

C

Therefore, D

We would argue that validating the third line of the proof
would require the reader to determine if the implication, “If
A and B, then C”, was warranted. Note here that simply
using a material conception of implication to see if this
implication was true would not be sufficient. Material impli-
cations will always be true if the consequent of the
implication is true. Hence, any string of correct statements
would constitute a valid proof, even if some of these state-
ments were non-trivial assertions that did not follow from
previous work. Also note that a material conception of impli-
cation would not be useful for gaining understanding of why
a statement was true by reading its proof. The truth of an
implication does not depend on the relationship between its
consequent and antecedent.

Of course, proofs are rarely as sparse as the generic proof
presented above. Proofs regularly contain words such as
“since”, “thus”, and “now”. Although these words do not
have a specific logical meaning, they nonetheless serve an

important function by alerting the reader to data and war-
rants for assertions that might not otherwise be inferable. For
instance, “thus” implies that the data for the forthcoming
assertion appears in the previous few lines.

We conjecture one’s line-by-line verification of a proof
might proceed like this. Each line of the proof is interpreted
as an argumentation whose conclusion is the statement being
asserted. The reader of the proof identifies the data and the
warrant used in this proof, inferring them if necessary. If
the warrant for the argumentation is socially agreed upon
by the mathematical community, this line is accepted as
valid. If the warrant is false, this line and the entire proof
are declared to be invalid.  If the warrant of an argumenta-
tion is plausible, but not socially agreed upon by the
mathematical community, backing for this warrant is
required and the proof is said to have a “gap” in it.

To illustrate this process, we use the above as a prescription
for analyzing a proof from an undergraduate textbook on real
analysis. This proof is taken verbatim from Abbot (2001),
but is separated into numbered lines to facilitate its analysis.

Statement: If a sequence is monotone and bounded,
then it converges

Proof.

1. Let (an) be monotone and bounded.  

2. To prove (an) converges using the definition of con-
vergence, we are going to need a candidate for the
limit.

3. Let’s assume that the sequence is increasing (the
decreasing case is handled similarly) and consider
the set of points {an: n ∈ N}.

4. By assumption, this set is bounded, 

5. so, we can let s = sup{an: n ∈ N}

6. It seems reasonable to claim that lim(an) = s [a
number-line diagram is included at this point]

7. To prove this, let ε > 0.

8. Because s is the least upper bound of {an: n ∈ N},
s – ε is not an upper bound,

9. so, there exists a point in the sequence an such that
s – ε < an.

10. Now, the fact that (an) is increasing implies that if n
≥ N, then an ≤ an.

11. Hence, s – ε < an ≤ an ≤ s < s + ε,

12. which implies |an – s| < ε as desired.

Lines 1, 3 and 7 of this proof are assumptions, so their valid-
ity need not be judged [4].

Lines 2 and 6 are motivational and could be omitted with-
out altering the substance of the proof. Our analysis
therefore focuses on the remaining lines.

Line 4: In this line, the conclusion is that the set {an: n ∈ N}
is bounded. The words “by assumption” refer to line 1, and
seem to indicate that this conclusion is identical to this assump-
tion. In our terms, however, the data would be that the sequence
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(an) is bounded and one must infer the warrant that if a sequence
is bounded, the set containing its terms is bounded.

Line 5: In this line, the data is the fact that the set is
bounded. The word “so” indicates that this data appeared in
the immediately preceding phrase. The conclusion is that the
set has a supremum and for a warrant one must infer that any
subset of the reals that is bounded above has a supremum in
the reals, i.e., that the reals are complete.

Line 8: In this line, the data is the fact s – ε is greater than
0 and that s is the supremum of the set. The fact that the lat-
ter is data is explicitly stated via the “because” clause. The
conclusion is that s – ε is not an upper bound. The warrant
is that there can be no upper bound for the set that is less
than the supremum – the use of the alternative terminology
“least upper bound” serves to emphasize that this is the war-
rant being used. One may also note that a sub-argument
could be offered as backing for this warrant. This would
have data that ε is greater than 0, warrant that if x > 0 then s
– x < s and conclusion that s – ε < s.

Line 9: In this line, the data is that s – ε is not an upper
bound. Once again, the use of “so” indicates that the con-
clusion from the previous line forms the data for this one.
The conclusion is that there exists a point in the sequence
an such that s – ε < an. For the warrant, one must recall the
definition of upper bound (or, more precisely, its negation)
and the fact that the set is the set of terms of the sequence.

Line 10: In this line, the data is that the sequence is
increasing. The use of “now” indicates that in this case this
data does not come from the conclusion of the previous line,
but rather is being invoked from elsewhere (in this case, the
as-yet-unused assumption in line 1). The conclusion is that if
n ≥ N, then aN ≤ an. The warrant appears to be that for every
increasing sequence and natural number N, if n ≥ N, then aN

≤ an. Backing for this warrant would involve invoking the
definition of increasing and using an inductive argument.

Line 11: The “hence” at the beginning of this line seems to
indicate that the conclusion uses data from the immediately
preceding lines, but in fact one also needs the fact that s is an
upper bound and that ε > 0. In this case, the warrant needed is
that inequalities may be chained together in this way, backing
for which would rely on the order axioms of the real numbers.

Line 12: This final line takes line 11 as data. This is
explicitly stated via the use of the phrase “which implies
that”. The conclusion is that |an – s| < ε (with some condi-
tions on <italics on>N<italics off>, although this is not
explicitly re-stated), and the warrant is the definition of
absolute value.

The above illustrates how one can consider and evaluate
warrants to read and validate a proof as presented in the text-
book for an undergraduate mathematics course. We would
argue that if warrants were not considered when reading the
proof, one’s understanding of the proof would be limited.
For instance, if one did not consider the warrant in line 5
(i.e., that sets of bounded real numbers had suprema), one
would not see how the proof hinged in a critical way upon
the completeness of the real numbers. One might believe
that this proof establishes that bounded, monotonic
sequences over any ordered field converged, although such
an assertion is not generally true (e.g., rational-numbered
sequences need not converge to a rational number). 

Pedagogical implications
What are the implications of the above discussion for the
teaching of proof-oriented mathematics? Teaching for these
mathematics courses often consists of the professor present-
ing proofs to establish theorems (e.g., Davis and Hersh,
1981; Weber, 2004). In this article, we have argued that for
students to gain conviction and understanding from these
proofs, they must consider the implicit warrants used to jus-
tify the assertions in the proof. However, it is not clear that
students will naturally do this. 

This conclusion leads us to argue that instruction in proof-
oriented mathematics courses should call attention to the
processes of inferring and evaluating warrants. However, we
have observed that the issue of warrants is not discussed in
proof-oriented mathematics courses, at least not in a sys-
tematic way. Textbooks on logical reasoning introduce the
notion of material implication in a highly structured man-
ner (e.g., in terms of rules for inference and truth tables),
but usually give no explicit discussion of the need to con-
sider warrants when reading proofs. Similarly, a detailed
observation of the instruction of an introductory real analy-
sis course also revealed that logical rules for implication
were stressed, but the issue of warrants was largely ignored
(Weber, 2004). 

It might be useful to consider why teachers give explicit
attention to whether an implication is true, while placing less
emphasis on the issue of whether an implication is war-
ranted. Assessing the truth of an implication is a well-
defined task. One only needs to check the truth of the
antecedent and the consequent and to confirm that either
the antecedent is false or the consequent is true. If a student
presents an implication that is not true, the professor can
clearly indicate why it is false. Determining whether an
implication is warranted is not such a well-defined task. One
cannot provide a canonical procedure for inferring a warrant.
Likewise, one cannot provide a well-specified set of guide-
lines for determining whether a warrant is legitimate. In fact,
determining whether a warrant would be considered accept-
able by the mathematical community may inherently involve
a degree of subjectivity. If a student presents a true but
unwarranted implication in a proof, it may be very difficult
to convince the student that there is a good reason for reject-
ing their proof as invalid.  This apparent subjectivity in a
supposedly rigorous subject may naturally make both pro-
fessors and students uncomfortable. It is perhaps for this
reason that warrants are not emphasized in proof-oriented
undergraduate mathematics courses. 

Given that considering whether implications are war-
ranted is essential for understanding proofs in advanced
mathematics courses, we would argue that warranted impli-
cations should be discussed in a systematic manner in
transition-to-proof courses. We believe that our framework
as outlined above can form a basis for this discussion by pro-
viding both a theoretical means of highlighting the
differences between material and warranted implication and
a practical structure for the process of inferring and evalu-
ating warrants.

[Notes and references can be found on page 51 (ed.)]
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Notes
[1] Utterances such as “umm”, stutters, and repeated words were removed
from the transcripts that are quoted to increase their readability. The text
[…] denotes that short segments of the transcript were deleted.
[2] Perhaps one could argue that the first implication is more acceptable
than the second because its proof is more obvious. However, this would
require the reader to infer the author’s intentions for why this would be
easier to prove. Such an action, to us, would closely correspond to infer-
ring a warrant.
[3] Note that this is not due to carelessness on the part of the author. It is
widely acknowledged that proofs would be impossibly long if each logical
detail was included (cf. Davis and Hersh, 1981).
[4] The reader instead should be concerned with whether the assumptions
used are part of a legitimate proof structure or framework (cf. Selden and
Selden, 1995).
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