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Over the last twenty years the relationship between proce-
dural skills and conceptual understanding has been widely
debated. This relationship plays a central role in the ‘Math
Wars’ discussions (Schoenfeld, 2004). An important issue in
this debate is how students best acquire algebraic expertise:
by practicing algorithms, or by focusing on reasoning and
strategic problem solving activities. The former approach
sees computational skills as a prerequisite for understand-
ing mathematical concepts (US Department of Education,
2007). In the latter approach, the focus is on conceptual
understanding (ibid.). Even if the idea is shared that both
procedural skills and conceptual understanding are impor-
tant, there are disagreements on their relationship and the
priorities between the two.

The last decades can also be characterized by the advent
of the use of technology in mathematics education. In its
position statement the National Council of Teachers of
Mathematics (2008) acknowledges the potential of ICT for
learning. The advance of technology may strengthen the
relevance of ‘real understanding’ in mathematics (Zorn,
2002). Still, there is a firm tradition of educational use of
ICT for rote skill training, often referred to as ‘drill and prac-
tice’; such a tradition is lacking for symbol sense skills. The
issue at stake, therefore, is twofold: how can the develop-
ment of procedural skills and symbol sense skills be
reconciled, and how can the potential of ICT be exploited for
this ambitious goal?

Procedural sKills ‘versus’ conceptual under-
standing

The distinction between procedural skills and conceptual
understanding is a highly researched field of interest. Kil-
patrick, Swafford and Findell (2001) synthesize the research
on this issue in the concept of mathematical proficiency,
which comprises five strands: conceptual understanding,
procedural fluency, strategic competence, adaptive reason-
ing and productive disposition. They define conceptual
understanding as “the comprehension of mathematical con-
cepts, operations, and relations” and procedural fluency as
the “skill in carrying out procedures flexibly, accurately,
efficiently, and appropriately” (p. 116). Furthermore, “the
five strands are interwoven and interdependent in the devel-
opment of proficiency in mathematics” (ibid.).

Arcavi (1994, 2005) provided a breakthrough in the think-
ing on procedural skill and conceptual understanding in
algebra. In 1994 he introduced the notion of symbol sense,
which includes “an intuitive feel for when to call on symbols
in the process of solving a problem, and conversely, when to
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Figure 1. Algebraic expertise as a dimension (Drijvers &
Kop, 2008)

abandon a symbolic treatment for better tools” (p. 25). Illus-
trating with examples, Arcavi described eight behaviors in
which symbol sense manifests itself. The examples showed
the intertwinement between procedural skills and conceptual
understanding as complementary aspects of algebraic exper-
tise. Both procedural skills and symbol sense need to be
addressed in algebra education, as they are intimately
related: understanding of concepts makes basic skills under-
standable, and basic skills can reinforce conceptual
understanding (Arcavi, 2005).

In line with the work of Arcavi, Drijvers (2006) sees alge-
braic expertise as a dimension ranging from basic skills to
symbol sense (see fig. 1). Basic skills involve procedural
work with a local focus and emphasis on algebraic calcula-
tion, while symbol sense involves strategic work with a
global focus and emphasis on algebraic reasoning.

One of the behaviors identified by Arcavi (1994) concerns
flexible manipulation skills. It includes the versatile ability
to manipulate expressions, not only technically but also with
insight, so that the student is in control of the work and over-
sees the strategy. Two important, and interlinked,
characteristics of flexible manipulations skill behavior are
the gestalt view on algebraic expressions (Arcavi, 1994) and
appropriate ways to deal with their visual salience (Kirsh-
ner & Awtry, 2004; Wenger, 1987).

A gestalt view on algebraic expressions involves the abil-
ity to consider an algebraic expression as a whole, to
recognize its global characteristics, to ‘read through’ alge-
braic expressions and equations, and to foresee the effects of
a manipulation strategy. Arcavi (1994) claimed that having a
gestalt view on specific expressions makes symbol handling
more efficient, and emphasizes that ‘reading through’
expressions can make the results more reasonable. A gestalt
view on algebraic expressions is a prerequisite for carrying
out basic procedural skills and for deciding which type of
manipulation to perform.

Flexible manipulation skills also involve dealing with
visual cues of algebraic expressions and equations, their so-
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called visual salience. Kirshner and Awtry (2004) provided
a definition of visual salience and tabulated several expres-
sions with greater and lesser visual salience, respectively.
They claimed, “visually salient rules have a visual coherence
that makes the left- and right-hand sides of the equation
appear naturally related to one another” (p. 11). This coher-
ence is strengthened by two properties of the equation under
consideration: (i) repetition of elements across the equal sign
and (ii) a visual reparsing of elements across the equal sign
(Awtry & Kirshner, 1994). Visual reparsing “manifests itself
as a dynamic visual displacement of elements” (p. 11). Take
for example:

ez
y)\z vz
B x-y+Ww+z=x+w)-(y+2)

In identity A, the right hand side seems to follow immedi-
ately from the left hand side. In identity B this is not so much
the case. However, the two identities are structurally similar:
replacing multiplication and division signs in A by addition
and subtraction, respectively, yields identity B. In spite of
this shared structure, identity A is more visually salient than
B. Awtry and Kirshner concluded that many errors in algebra
are not the result of conceptual misunderstanding, but of an
over-reliance on visual salience. The way Awtry and Kirsh-
ner perceived visual salience seems to be closely related to
our perception of gestalt.

In line with Wenger (1987), who describes salient patterns
and salient symbols, in this study we distinguish two differ-
ent types of visual salience: pattern salience and local
salience. Pattern salience (PS) concerns the recognition of
patterns in expressions and equations, and as such is close to
the ideas of Awtry and Kirschner described above. If a pat-
tern is recognized by the student by means of a gestalt view,
it may recall a standard procedure and invite its application.
Local salience (LS) concerns the salience of visual attractors
such as exponents, square root signs and fractions. Whether it
is good or bad to resist the local visual salience depends on
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the situation. Using our extended definition of visual
salience, developing a feeling for when to resist or succumb
to both pattern and local visual salience is part of the acqui-
sition of a gestalt view and thus of algebraic expertise. In
short, a gestalt view includes both pattern salience, involv-
ing the recognition of visual patterns, and local salience,
involving the attraction by local algebraic symbols. In both
cases, a gestalt view is needed to decide whether to resist or
succumb to the salience. A gestalt view, therefore, includes
the learner’s strategic decision of what to do next. This is
graphically depicted in figure 2. It should be noted that visual
salience is not a matter of “yes” or “no”: algebraic expres-
sions may have different degrees of visual salience that also
depend on the context and on the knowledge of the student.

The resistance to visual salience refers to the ability to
resist visually salient properties of expressions, and their
implicit invitation to carry out specific operations. For
example, students who perceive brackets may be tempted
to expand the expression, whereas this does not necessarily
bring them closer to the desired result. Another example is
the sensitivity to square root signs in an equation, that in
the students’ eyes ‘beg to be squared’, even if this may com-
plicate the equation. The opposite can be said for exponents
on both hand sides of an equation: here taking roots can or
cannot be an efficient operation.

How might technology fit in?

Now how about the role of technology in the acquisition
of algebraic expertise in the sense of both procedural skills
and symbol sense, and with a focus on a gestalt view on,
and the visual salience of, algebraic expressions? Educa-
tional use of ICT often consists of ‘drill-and-practice’
activities, and as such seems to focus on procedural skills
rather than on conceptual understanding. However,
research in the frame of instrumental and anthropological
approaches shows that there is an interaction between the
use of ICT tools and conceptual understanding (Artigue,
2002). This interaction is at the heart of instrumental gen-
esis: the process of an artifact becoming an instrument. In
this process both conceptual and technical knowledge play
arole. To exploit ICT’s potential for the development of
algebraic expertise, it is crucial that students can reconcile
conventional pen-and-paper techniques and ICT techniques
(Kieran & Drijvers, 2006). Important characteristics of ICT
tools that can be used for addressing both procedural skills
and conceptual understanding are options for the registra-
tion of the student’s solution process, and the possibility for
the student to use different strategies through a stepwise
approach. This enables the student to apply his or her own
paper-and-pencil reasoning steps and strategies (Bokhove
& Drijvers, 2010).

The opportunities that technology offers for the develop-
ment of such algebraic expertise so far remain unexploited.
Our goal, therefore, is to design and pilot digital activities
that cater for the development of both procedural fluency
and conceptual understanding. More specifically, we try to
observe symbol sense behavior in digital activities. Do the
concepts of symbol sense, gestalt view and pattern and local
visual salience, described in a pre-digital era, help us in
understanding what students do in a digital environment?



This is the main topic of this article. In answering this ques-
tion we do not focus on the characteristics of the digital tool
(Bokhove, in press; Bokhove & Drijvers, 2010); rather, we
focus on the mathematical aspects.

Categories of items with symbol sense oppor-
tunities

To address the above issue, we first have to decide what we
want to observe. We want to be able to see which strategic
decisions students make while solving algebraic tasks in a
digital environment. We want to know what salient charac-
teristics - be they pattern salience or local salience -
students resist or succumb to. This can only be done if the
tasks offer symbol sense opportunities. For the task design,
we used sources related to the transition from secondary to
tertiary education, such as exit and entry examinations,
remedial courses, textbooks and journals. Several suitable
‘symbol sense type items’ were identified and selected
according to their focus on gestalt view and visual salience
and supported by theoretical reflections from literature. The
main criterion was that items would invite both procedural
skills and symbol sense. This yielded a collection of thirty
items, grouped into four categories, addressing both proce-
dural skills and symbol sense, with an emphasis on the latter.
We defined four categories of items, (1) on solving equa-
tions with common factors, (2) on covering up sub-
expressions, (3) on resisting visual salience in powers of
sub-expressions, and (4) items that involve recognizing ‘hid-
den’ factors. Even if these categories may seem quite
specific, they share the overall characteristic of an inter-
twinement between local and global, procedural and
strategic focus.

Category 1: Solving equations with common factors

Items in this category are equations with a common factor
on the left and right-hand side, such as:

Solve the equation:
@-Tx+12)- Bx-11)=x*-Tx+12)- Bx + 14)

A symbol sense approach involves recognizing the com-
mon pattern - in this case the common quadratic factor. This
is considered as a sign of pattern salience, involving the pat-
tern AB = AC. After recognizing the pattern, students have to
decide whether or not to expand the brackets. The decision
not to expand the brackets is seen as a sign of gestalt view
and of resistance to the pattern salience of the pairs of brack-
ets on both sides of the equation. After deciding not to
expand, students could be tempted to just cancel out the qua-
dratic terms on both hand sides of the equation, relying on
the rule AB = AC = B = C and thereby forgetting that A = 0
also yields solutions. This could be the result of a wrong
rewrite rule applied to a recognized pattern. A non-symbol
sense approach would involve expanding both sides of the
equation, in this case yielding a third order equation that
cannot be solved by the average student.

Category 2: Covering up sub-expressions

In this category, sub-expressions need to be considered as
algebraic entities that can be covered up without caring for
their content. A well-known example is:

Solve for v:

V-yu=1+2v-yl+u

A symbol sense approach consists of noticing that the expres-
sions under the square root signs are not important for the
solution procedure (gestalt) and can be covered up. This
requires a resistance to the local salient square root signs. In
addition to this, a resistance is needed to the tendency to just
isolate the v on the left hand side of the expression by divid-
ing by the square root of u, which would leave a v on the right
hand side. Thus, resistance to pattern salience is required as
well, and not doing so shows a limited gestalt view.

A non-symbol sense approach might focus on the visu-
ally attractive square roots and try to get rid of them by
squaring both sides. This would be a strategic error, and does
not bring the solution any closer.

This equation is presented by Wenger (1987), who
explained the issue as follows:

If you can see your way past the morass of symbols and
observe the equation #1 (v - vu =2 + 2v - /1 + u, which
is to be solved for v) is linear in v, the problem is essen-
tially solved: an equation of the form av = b + cv, has
a solution of the form v = b/(a - ¢), if a = ¢, no matter
how complicated the expressions a, b and ¢ may be. Yet
students consistently have great difficulty with such
problems. (p. 219)

Recognizing the salient pattern of a linear function AV =B + CV
and what to do with it is deemed a gestalt view, as defined in
our conceptual framework. Gravemeijer (1990) elaborates on
the same example and emphasizes the importance of recog-
nizing global characteristics of functions and equations.

Category 3: Resisting visual salience in powers of sub-
expressions

This category is about recognizing when to expand expres-
sions and when not. It contains equations with sub-
expressions that just beg to be expanded because they are
raised to a power:

Solve the equation:
(x-31+4=40

A symbol sense approach would include the recognition that
after subtracting 4, both sides are squares, of x - 3 and /36,
respectively. One should resist the temptation of expanding
the left-hand side of the equation (resistance to pattern
salience). Expanding the square to get rid of the brackets
would be quite inefficient, and therefore is considered a non-
symbol sense approach. Once the two squares of the pattern
A? = B? are recognized, it is a sign of good gestalt view to
succumb to the pattern salience by taking the square roots
of both sides of the equation.
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This item has several variants. For example, what if (x - 3)
is raised to the seventh power in the above example? The
amount of work involved expanding this expression may
stimulate students to look for alternative solutions.

Category 4: Recognizing ‘hidden’ factors

This category concerns the recognition of factors that are not
immediately apparent (gestalt). An example is the follow-
ing item adapted from Tempelaar (2007):

X =x

X =2x+1

Rewrite

A symbol sense approach would involve recognizing a com-
mon factor in both numerator and denominator and noticing
that both numerator and denominator can be factored by (x - 1).
A pattern j—g is then recognized. A further manifestation of
what to do next, a gestalt view, facilitates further simplifi-
cation and may lead to an equation resembling those of the
first category. Not recognizing these factors results in com-
plex rewriting. A non-symbol sense approach would involve
the manipulation of algebraic fractions without much result.

The design of a prototypical digital environment
The next step was to design a prototypical digital environ-
ment containing the items we defined. For this we carried
out an inventory of digital tools for algebra and chose to
use the Digital Mathematical Environment DME (Bokhove
& Drijvers, 2010). Key features of DME that led to its
choice are that it enables students to use stepwise strategies
and that it stores these stepwise solution processes. It also
offers different levels of feedback, allows for item random-
ization and has proved to be stable.

For the design we used the DME’s authoring tool. Figure
3 shows some of its main features: the question text, the ini-
tial expression, the answer model, navigation, scoring and
the possible use of randomized parameters. Figure 4 shows
the implementation of an item from the first category. It is
important to note that the algebraic steps are provided by the
student, while the tool formats the steps, checks them alge-
braically and provides feedback. [1]

B £dit-Mode of Activity Symbol Sense Activities
e T T
] Titte: random [ New editor version
[Task2 | [a=t=Tc12 008110030514
Text ] Graph tool
HOo®oo O AN
Solve the equation: Start equation or -expression: o owa%

Mrrsaone
(Hr” + bx + o) (R + = (e + b +

Question text

Navigation through the
tasks

The initial expression or
equation

[ Equivalent ]
& & Ngedra [Pacice  [v] @mswornceses [
- [ Exact [ Question
0000PPPPO® ¢ management, scoring,
Oab.. “» and assessment mode

Figure 3. Authoring an item on the equation
(C=-7x+12)-(8x-11) = (¥*-7x+12)-(3x + 14)
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Figure 4. Example of student steps and feedback provided
by the tool

Piloting through one-to-one sessions

To find out whether the concepts of symbol sense, gestalt view
and pattern and local visual salience help us in understanding
what students do in a digital environment, five one-to-one ses-
sions with pre-university grade 12 students (17 year olds) were
held. The students all had C+ grades for mathematics.

During the two-hour sessions, students worked through the
digital activities. They were asked to think aloud while work-
ing. If a student was not able to complete (part of) a task, the
observer asked what information would help in proceeding.
On occasions where student used wrong strategies or made
specific procedural choices, the observer asked the student
what he or she was thinking. This informed possible feed-
back for a future revision of the prototype. After completing
the session, the observer and the student went through the
student’s work and reflected on the solutions, discussing the
student’s arguments and alternative solution paths.

Data consisted of audio and video registrations and com-
puter screen recordings. Data analysis focused on the types
of behaviors shown by students while working with the dig-
ital activities, and in particular on signs of (a lack of) symbol
sense, and was carried out with software for qualitative data
analysis. One first round of analysis concerned students’
technical behavior when performing algebraic activities:
factoring expressions, rewriting expressions, aggregating
terms, expanding expressions and canceling terms. A second
round of analysis concerned the identification of gestalt
and/or visual salience features in the students’ behaviors. [2]

We now summarize the findings of the one-to-one sessions
for each of the item categories. Per category one typical
example of student behavior concerning gestalt and/or visual
salience is given, as well as an overall description of the
observed behaviors. We provide a rough time indication A ¢
in minutes per step, the technique used and comments on
behavior related to gestalt view and visual salience.

Student behavior on category 1 items

Figure 5 shows the work of one of the students, Martin. Mar-
tin did not recognize the common factors on the left- and
right-hand side. In the first step he expanded the expressions
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Figure 5. Student solving an equation containing common
factors

on both sides, a strategy that he incorrectly described as
“always works”. His inability to notice the common factor,
and the pattern salience of the pairs of brackets, lead to his
expanding strategy, a strategy which he used successfully -
though not efficiently - in the previous task. In the second and
third step Martin looked for terms that could be aggregated
and rewrote the expression in the form ‘expression = number’.
Next he tried to factor the left-hand side. Although he showed
good rewriting skills, and was even able to factor the expres-
sion later on, he gave up eventually. Martin realized that he
could not solve a third degree equation. His approach does not
reflect a gestalt view on the initial equation.

In general, student behavior on this task and similar ones
in this category showed that both too much routine and a
lack of self-confidence play an important role in obstruct-
ing gestalt. For example, student Laura solved several
equations correctly, but always worked towards the Qua-
dratic Formula. She also solved one equation correctly with
a symbol sense strategy, but when confronted with a similar
equation with fractional terms, she was reluctant to solve it
as she immediately stated she “was not skilled enough”.
Only later did she recognize that, although the equation
looked different, a similar technique could be used. Ideally a
student would recognize the zero product theorem here.
Another solution involved ‘just’ canceling out the common
factors. As described in the category descriptions this indi-
cates that on the one hand there is gestalt and resistance to
pattern salience (“I’m not expanding both hand sides of the
equation”). On the other hand, however, students also suc-
cumb to an incorrect pattern salience, a buggy rule, of
AB = AC = B = C by just canceling out the common factors.

From this category we conclude that a gestalt view, and
the observation of the salience of the common factor pat-
tern in particular, is not evident for many students. Even
skilled students show a lack of gestalt view on encounter-
ing this type of task in a digital environment.

Student behavior on category 2 items

Figure 6 shows Barbara’s digital work on equation by
Wenger (1987). Barbara was instantly alerted by the square
root signs, knowing that squaring these would not bring a
solution any closer. Thus, she resisted the local salience of
the square root signs. She was triggered by the task to write
the expression in the form v = ... and first divided by the
symbol in front of the v. This corresponds with Wenger’s
observed strategy: “Divide the equation by the coefficient of
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Figure 6. Student behavior on the Wenger equation
(Wenger, 1987)

one of the occurrences of v in the given equation” (p. 230).
This can be seen as succumbing to pattern salience. Asking
for an expression in the form v = is directly transferred to the
expression, and the quickest path to a solution in that form is
dividing by +u. Barbara used one more step to rewrite the
right-hand side as one fraction. She then took some time and
circled numerous times round the term 2v exclaiming, “I
want to get rid of this term”. She then started to rewrite the
numerator, stating: “I want to simplify the numerator. I think
this helps” and “I often do this to create a sort of hunch. That
I'look at the exercise in a different way, as to see what can be
better or must be done”. She used her procedural skill to
rewrite terms hoping that this might provide insight into the
correct solution path. After backtracking, she tried another
approach, but again ended up with a term 2v on the right-
hand side. She then gave up.

In general, the students started with similar steps as
Barbara did, focusing only on the v on the left-hand side of the
equation. Some gave up because of circularity: “... the
process of symbolic manipulation which results in an obvi-
ous or tautological identity, which is uninformative and
unproductive” (Arcavi, 1994, p. 29). Two of the students
backtracked after unsuccessful attempts and seemed to have
a better idea what to do, finally ending up completing the task
correctly. This was facilitated by the fact that the tool provided
feedback on the correct or incorrect nature of an answer. This
can be seen in figure 4, where the system responds with the
comment that solutions are missing. Other versions of this
type of task, presented right after this one, but with different
variables, were recognized by most students. Remarkably, the
students with the higher marks for calculus saw some of these
tasks as completely new ones. These students solved them
correctly, but in a very inefficient way. Apparently, showing
a high procedural skill mastery does not necessarily imply that
a student sees the general in the particular.

From this category we conclude that in the digital envi-
ronment students show the same specific behavior when
covering up irrelevant sub-expressions as Wenger reported
earlier: students show resistance to local salience but fall
victim of pattern salience. The chosen actions by the stu-
dents reveal a lack of gestalt view.

Student behavior on category 3 items

Figure 7 shows the work by Laura on a category 3 item.
Laura did not recognize 36 as a square, and expanded the
left-hand side. The diagonal juxtaposition, as described by
Kirshner (1989), was too strong to withstand: the square
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Figure 7. Student not resisting visual salience

must be eliminated and this was done by expanding the term
(non-resistance to pattern salience). Laura preferred to use
her standard procedure for quadratic equations: to first
rewrite as a quadratic equation equaling zero. Then she fac-
tored the expression on the left-hand side. Laura stated that
this was possible because of the “nice numbers”, which can
be seen as a gestalt view. Otherwise she would have used the
Quadratic Formula that “always works”. This process finally
yielded the correct solutions. She could have reached this
solution more efficiently if she had recognized 36 as a
square, and then had noticed that both sides of the equations
could be considered as squares - that is, she would have
observed the pattern A* = B°. In this case her standard pro-
cedure obstructed any thoughts on alternate strategies.

In general, students did recognize both sides as squares. In
contrast, the previous task involved the equation x* - 6x + 9 = 36,
in fact the same equation with expanded left-hand side. It
was remarkable that no student noticed these tasks were sim-
ilar. From this category we conclude that lack of gestalt view
on the initial equation, and lack of resistance to pattern
salience, obstructs students thinking about alternate strate-
gies, as is the case in a pen-and-paper setting as well.

Student behavior on category 4 items

Figure 8 shows Barbara’s work on a category 4 task. Barbara
instantly started rewriting, applying her knowledge of frac-
tions. Instead of recognizing a common factor in both
numerator and denominator - the pattern 4-¢~ - she started
with what she did best: rewrite the expression as a sum of
fractions - the pattern rule = -2,2 We see this as suc-
cumbing to a weak form ot pattern salience and a lack of
gestalt view. Next she factored the denominator and canceled
out x in both terms. After several steps she noticed that the
expression was becoming increasingly complex. The tick sym-
bol denoted that the algebraic operations so far were correct.
This, however, did not bring her to a more simplified expres-
sion. While carrying out these operations, Barbara became
aware of the fact that x - 1 played an important role in both
numerator and denominator. She then backtracked, rewrote the
initial expression with x - 1 as factors and canceled them out.
In general, students showed trial-and-error behavior on this
item. In some cases, this method seemed to provide the student
with global insight into the expression. From this category we
conclude that these students have difficulties in recognizing
common factors in nominator and denominator (lack of
gestalt); however, the tool offers opportunities for a trial-and-
error approach, which can provide insight into these factors.
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Figure 8. Student not recognizing a hidden common factor

Conclusion and discussion

The issue we wanted to address in this article is whether the
notions of symbol sense, gestalt view and visual salience,
described in a pre-digital era, help us in understanding what
students do in a digital environment. The design process and
the one-to-one pilot sessions suggest that these concepts
remain extremely relevant when deploying digital activities.
The observations show that students using a digital environ-
ment exhibit both symbol sense behaviors and behavior
lacking it. The notions of gestalt view and visual salience
are helpful in analyzing student work. Although students
work in a digital environment instead of with paper and pen-
cil, these results are in line with past findings in traditional
pen-and-paper settings (Arcavi, 1994; Wenger, 1987).

While solving algebraic tasks in the digital environment,
the students can use any strategy, and thus can show sensi-
tivity towards gestalt and visual salience aspects, and further
develop such sensibility. The tool seems to facilitate this
development through its mathematical interface and feed-
back opportunities, which would be more difficult to offer in
a paper-and-pencil environment.

The exemplary tasks also point out that observing sym-
bol sense is not a straightforward affair. It often is quite hard
to recognize whether students are relying on standard alge-
braic procedures or are actually showing insight into the
equation of expression, in line with the gestalt view or visual
salience notion. Using standard procedures at least implies
that a student recognizes the form of an expression. Recog-
nizing patterns, and subsequently deciding what action to
take, reflects a gestalt view. However, (over-)reliance on
standard procedures can also be seen as a matter of ‘suc-
cumbing’ to routine patterns: when a student encounters an
expression with brackets he wants them to be eliminated.
Extending the concept of visual salience to patterns provided
by standard routines students already know could perhaps
relieve the tension between the application of standard rou-
tines and succumbing to salient patterns.

Are we suggesting that digital tools are the panacea for
algebra education? Things are not as simple as that. Crucial
to the issue of how to design such activities is of course
appropriate content - that is items inviting symbol sense, as
proposed by the designed categorization. If the tasks are not
appropriate, the intended learning will not happen. The
potential is in the combination of task design and digital
implementation. If the tasks do invite for adequate procedural
techniques and appropriate theoretical thinking, a powerful
environment is designed. The Task-Technique-Theory model



(Chevallard, 1999; Kieran & Drijvers, 2006; Lagrange,
2000) may help designers to keep this aspect in mind.

The digital environment itself is a next crucial factor. High
demands are put upon the digital tool in use. Students can
get stuck by limitations of the technology. This being said,
the potential added value of technology is promising: com-
pared to carrying out the tasks with paper and pencil, we now
have opportunities for different levels feedback and correc-
tion, for construction and exploration room for students,
private and ‘endless’ practice and room for multiple step-
wise strategies. With these conditions, the student is not
restricted to strategies proposed by the digital tool itself, but
can make his or her own correct or incorrect reasoning steps.

These conclusions suggest some guidelines for further
research and development. Three issues for future develop-
ment emerge: the sequencing of tasks, the extension of
feedback, and scaffolding. First, future development should
involve the design of outlined sequences of tasks, which
appeal to symbol sense, and range from ‘solvable with pro-
cedural skills’ through ‘inviting symbol sense’ to ‘only
solvable with symbol sense insight’. Second, cues for devel-
oping gestalt view and the ability to deal with visual salience
could be provided by relevant feedback. This issue asks for
further elaboration. Feedback needs to be designed in more
detail, concerning both the amount and the type of feedback
(Hattie & Timperley, 2007). This also includes timing issues.
As we saw students just starting a task without taking the
time to actually think about it, it might be a good idea to
include a cue for first scrutinizing the item carefully. When
addressing feedback we can build on research by Nicaud
(2004) and Sangwin (2008). Third, it might be worthwhile
to build scaffolding into the sequence of activities, through
initial activities that are structured and provide much feed-
back, that are then followed by items that gradually offer
less structure and feedback. Support for this idea of formative
scenarios (Bokhove, 2008) can be found in the notion of fad-
ing (Renkl, Atkinson, Maier, & Staley, 2002). It is in the line
of these three issues that we plan to continue our research.

We do not pretend that the final word in the debate on pro-
cedural skills and symbol sense skills has been said. We do
believe, however, that an optimal educational strategy is to
focus on both simultaneously, and that technology may pro-
vide appropriate environments for this.
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Notes

[1] An English version of the prototype can be found at
http://www.fi.uu.nl/dwo/en/. For storage of the results, registration is
required, but one can also enter as a guest user.

[2] Data is available through http://www.fi.un.nl/~christianb.
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