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There is a consensus amongst mathematicians and mathe-
matics educators that proving is a fundamental activity that
should play a prominent role in all mathematics classrooms.
What is less clear is the exact role that proof should play,
and how the construction and observation of proofs can be
beneficial to students. To address these issues, some
researchers have sought insight by investigating how proof
is viewed by the mathematical community. In an influential
article, de Villiers (1990) argues that proof serves numer-
ous functions for mathematicians, including providing
conviction that a theorem is true, explaining why a theorem
is true, facilitating communication between mathematicians
by presenting arguments in a common genre, enabling the
discovery of new theorems, and systematizing mathemati-
cal theories. Many researchers have lamented that proof only
plays a limited role in mathematics classrooms – establish-
ing the truth of a theorem – and argue that proofs should
also serve the function of providing explanation and facili-
tating communication, as they do in the mathematical
community (e.g., Hersh, 1993; Knuth, 2002).

Within the last few decades, many philosophers of math-
ematics have argued that the role of proof in providing
conviction is often overstated (e.g., de Villiers, 1990;
Thurston, 1994; Rota, 1997; Rav, 1999; Dawson, 2006). de
Villiers (1990) notes that mathematicians are usually con-
vinced that a theorem is true before they attempt to prove it
and are sometimes not fully convinced of the truth of a the-
orem after reading its proof. In a recent study, I asked eight
research-active mathematicians whether they read a proof
for correctness or hoped to get something more out of it.
All eight emphatically answered their primary aim from
reading a proof was to gain insight (Weber, 2008), a finding
that corroborates the analyses of many mathematics educa-
tors (e.g., Hanna, 1991; Hersh, 1993). The goal of this paper
is to illuminate what type of insight mathematicians gain
from reading proofs. Of course, there is no single way that
a proof may provide insight and several philosophers have
analyzed the types of insights one might glean from a proof
(e.g., Mancosu, 2000; Avigad, 2006; Dawson, 2006). In this
article, I contribute to this conversation by reporting the
perspectives of nine prominent research-active mathemati-
cians discussing what they hope to gain from reading the
proofs of others.

Proofs that reconceive mathematical domains
In a recent study, I interviewed nine mathematicians about
their experiences with reading mathematical proofs in their
professional work and presenting proofs to students in their
classroom. One specific question that I asked was, “What
do you hope to gain from reading the published proofs of
others?” There was some variation in their responses – some
claimed one reason for reading a proof was to verify that
the theorem was true while others specifically emphasized
that they did not read a proof to obtain conviction of a theo-
rem’s truthfulness. However, there was one commonality in
all nine responses. All of the interviewed mathematicians
claimed that reading published proofs provided them with
new ways to think about mathematical problems that were
of interest to them. These new ways of thinking were sorted
into two categories – reconceiving mathematical domains
and learning new proof techniques. I discuss the latter source
of insight in a later section and describe how proofs can lead
to new ways of conceiving mathematical domains here.

When mathematicians work within a mathematical
domain, they usually have images of the concepts (in the
sense of Tall & Vinner, 1981) that they are studying. In ear-
lier papers, my colleagues and I stressed the importance that
these images had in the construction and comprehension of
proofs (Weber & Alcock, 2004, 2009; see also Raman,
2003). However, we did not discuss another use that these
concept images could have – suggesting what mathematical
assertions are likely to be true. The mathematicians that I
interviewed argued that reading the proof of another enabled
them to refine their intuitions and images about the con-
cepts they were studying. In the excerpt below, I asked M3
what he hoped to gain out of reading the published proofs
of others. In his response, he mentioned his purpose when
reading a proof was to “look for insight”. I asked him to
clarify what “insight” meant for him:

M3: What you want to understand, among other things,
is why the person who proved it thought it might
be true. I have in mind that I was reading recently,
that after reading the proof I still don’t understand
why the fellow believed that it would be right. He
proved it in a way that one would prove it if one
expected it; I mean would have done approximately
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the same thing … The statement isn’t one that I
would have immediately attempted to prove; it
just didn’t particularly look likely, and I wouldn’t
have … To find the proof will take a certain
amount of time, you know what to do, but if you
don’t believe the statement then you go into it five
steps and then it will break down, more or less,
so what’s the point? (emphases added)

Like M3, several mathematicians mentioned that when read-
ing the proof of a theorem that they considered counter-
intuitive or unlikely to be true, they would do so with an
eye toward understanding why the author believed the claim
was true. In the excerpt above, M3 describes one example
(in which he was not able to obtain this insight) where the
proof of a theorem he read was fairly routine, but he would
not have invested the time to try to write this proof since
his concept images suggested the theorem was not likely to
be true. This tendency is also illustrated by the excerpt
below, in which M8 describes his desire to understand how
his productive colleagues are thinking.

M8: If someone is proving a lot of interesting theo-
rems, one thing that I try to get out of his proofs
is I try to understand how he [sic] is understand-
ing things. I want to know how he [sic] is
thinking. If I can think in the same way, maybe
I’ll discover some interesting theorems too.

The issue raised above was also discussed in Thurston’s
(1994) essay on proof and progress in mathematics.
Thurston claims that when he proved a significant result,
what mathematicians most wanted and needed from him
were his ways of thinking about the area of mathematics
that enabled him to develop his proof; mathematicians val-
ued his mental models more than the proof itself (p. 376).
Thurston also notes that when a mathematician proves an
important theorem, he or she usually makes a number of
other important contributions in that area in the near future.
He suggests the most important reason for this is that “a
mathematical breakthrough usually represents a new way
of thinking, and effective ways of thinking can usually be
applied in more than one situation” (p. 372).

In some cases, the proofs the mathematicians read were
used to radically alter the way they conceptualized the
domain they were studying.

M1: [discussing reading proofs] Now there are other
proofs where you just don’t pay attention to two
thirds of the proof, and then an idea flashes forward
and you just ignore the rest of the argument… you
say “here’s an idea, I didn’t have that idea, that’s an
interesting idea”. But not all of that is embedded in
proofs. I remember a professor when I was under-
graduate saying that one of the ideas of the 20th
century was that functions could become points in
a space. And I remember that a good deal more than
the various proofs that he did that day in the class-
room that may have illustrated that a little bit.

Many of the theorems in functional analysis cannot be jus-
tified using the representations of functions that students

typically develop through their undergraduate mathematics
curricula. Justifying – and in some cases, formulating –
these more complicated theorems requires a new way of
thinking about functions. One such way is thinking of func-
tions as points in a functional space. The proofs observed
by M1 introduced him to a powerful new way of thinking
about functions that was indispensable for formulating and
proving theorems in functional analysis.

Finally, at several points, the mathematicians in this study
argued that reconceiving mathematical domains should be
an explicit goal of instruction. In the excerpt below, M1 dis-
cusses how some proofs in linear algebra may require
students to view vector spaces not just as arrays on which
calculations can be performed, but more abstractly:

I: Are there any proofs in your courses that you
would consider a must-see?

M1: In the introductory course where Linear Algebra
means looking at vector spaces of Rn viewed as
column vectors, then the notion of linear indepen-
dence and dependence they find somewhat hard
but they can convert it to an immediate computa-
tional task, namely taking your finite set of
vectors, making a matrix out of it, and then cal-
culating the reduced echelon form of that matrix.
That’s what happens roughly in the first half of
the course. But the second part of the course,
where we start talking about eigenvectors and
eigenvalues, then the complexity is at a com-
pletely higher level, because now these are things
that cannot be calculated by rational arithmetic.
And so the key point one uses is that if you have
a set of vectors, each of which is an eigenvector
for a different eigenvalue of a matrix, then that
set of vectors is linearly independent. So this is
something that they cannot prove by the method
they’ve used previously because they don’t have
those vectors given as column vectors and they
can’t apply this row-reduction algorithmic aspect,
so they need an idea … So to me, in the Linear
Algebra course, that’s the first must-see proof …
because that one to me is a point where they have
to come up with a new way of looking at the sub-
ject and that the previous algorithmic approach is
not sufficient to give them the answer.

I: Oh, so that proof is introducing them to a new way
of thinking.

M1: A new way of thinking, absolutely. So that’s why
… in Linear Algebra, I consider that the first
must-see proof.

The distinction between explanation and new
ways of thinking
Mathematics educators have long argued that proofs should
not only convince students that a proof is true but also
explain why it is true (e.g., Hanna, 1990; Hersh, 1993).
Steiner (1978) defines an explanatory proof as one that
“makes reference to a characterizing property of an entity
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or structure mentioned in the theorem, such that from the
proof it is evident that the result depended upon the prop-
erty” (p. 143). He operationalizes the notion of characteristic
property by noting that the proof would fail if this property
were not in place and, crucially, the proof can be deformed
by holding the proof idea constant but substituting different
characteristic properties to produce new theorems. Hanna
(1990) introduced the mathematics education community
to Steiner’s construct and others have used this as an ana-
lytical tool for their research (e.g., Reid, 1995), although
most mathematics educators who use the term do not verify
that the proofs they find to be explanatory can be deformed
to prove new theorems as Steiner dictates. Some philoso-
phers have questioned the utility of Steiner’s definition
because it does not apply to all proofs that mathematicians
recognize as explanatory (Resnik & Kushner, 1987 [1]).
Mancosu (2000) believes that this is because proofs can be
explanatory in different respects.

I believe Steiner’s notion of explanatory proofs is limited
for the purposes of mathematics education for another rea-
son. Steiner treats an explanatory proof as a property inherent
in the text of the proof rather than an interaction between the
proof and its reader. The issue of whom a proof is explana-
tory to is not considered in Steiner’s definition or, indeed, in
most philosophers’ treatment of explanatory proofs. Man-
cosu (2000) suggests that such issues are beyond the scope
of philosophy and belong in the domain of psychology or
mathematics education. However, to mathematics educators
who wish to use proofs to foster understanding, it is crucial
to consider who is reading the proof; it is easy to imagine a
proof that is explanatory to one student but not another and
a good teacher cannot overlook this difference.

I offer the following student-centered definition of an
explanatory proof. Mathematical concepts can be represented
in a formal representation system where they are defined by
a precise definition using logical notation, properties of the
concept must be deduced from this definition, and inferences
must be based on logical rules, definitions, theorems, and
other permissible techniques. Proofs of theorems must be pro-
duced in such a formal representation system. However, one
can also represent mathematical concepts in other represen-
tational systems. Raman (2003) provides the example of
representing an even function formally as a function that sat-
isfies the condition ∀x∈ R(f(x) = f(–x) and informally as a
function whose graph is symmetric around the y-axis. One
can reason about concepts and justify properties of concepts
within these informal representational systems. Weber and
Alcock (2009) refer to such systems as semantic representa-
tion systems and define reasoning within such systems to be
semantic reasoning. Often, students and mathematicians will
use this reasoning as a basis for constructing a formal proof.
Weber and Alcock (2004) defined producing a proof in this
way as a semantic proof production. I conceptualize a proof
that explains as a proof that enables the reader of the proof
to reverse the connection – that is, this proof allows the
reader to translate the formal argument that he or she is read-
ing to a less formal argument in a separate semantic
representation system. Mancosu (2000) defines an impor-
tant function of some explanatory proofs as “a reduction to
the familiar” (p. 106). My characterization of explanatory

proofs aims to capture this perspective with a focus on the
individual who is reading the proof.

I argue that a proof that reconceives a domain of mathe-
matics qualifies as a proof that explains, but it also does
something more. It does not enable the reader to map a for-
mal argument to an informal representation system that
already exists in the reader’s mind. Rather it helps the reader
develop a new representational system for thinking about
the mathematical ideas relevant to that proof. I believe this
is what Thurston (1994, reprinted in Thurston, 1995) had in
mind when he claimed that, after he proved a theorem, what
mathematicians desired from him was not his demonstra-
tion that the proof was correct; rather, it was the mental
models that he had developed that allowed him to construct
this proof. They wanted to use his proofs to develop the rep-
resentational systems that Thurston possessed.

The following example might make this point clear. Raman
(2003) observed mathematicians proving that the derivative
of an even function was an odd function. One mathemati-
cian’s proof was based on the idea that since the graphs of
even functions were symmetric with respect to the y-axis, the
tangent lines to the graph at x and –x would be mirror images
of each other with respect to the y-axis. Therefore, the slopes
of these tangent lines would have the same magnitude, but
different signs. A proof that made this reasoning transparent
could be a proof that explains, assuming that the reader of
this proof already understood the standard graphical repre-
sentations of even functions and derivatives. The key to the
construction of this proof was to recall and coordinate con-
ventional ways of thinking about the relevant concepts. In
contrast, a proof that reconceives a mathematical domain
offers the reader a new way of thinking about these concepts.
Note that it is a direct consequence of these descriptions that
a proof that reconceives a domain of mathematics for a stu-
dent may merely be a proof that explains for a teacher and
could conceivably be a purely formal demonstration for some-
one else that does not know the subject.

Proofs that introduce new methods
A second type of insight that proofs provided some partici-
pants was new methods that they could use to approach
problems that were challenging to them.

I: What do you hope to gain when you read [some-
one else’s published proof]?

M4: Okay. Two things. One is I would like to find out
whether their asserted result is true... And that
might help me, if it’s something I’d like to use,
then knowing it’s true frees me to use it … More
importantly, I want to understand the proof tech-
nique in case I can use bits and pieces of that proof
technique to prove something that the original
author hasn’t yet proved.

I: What do you hope to gain out of reading these
proofs?

M5: As a researcher, I want to understand the idea of
the proof and to see if that idea could be applied
elsewhere.
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I: The point that you made about ideas is something
that I’ve been hearing from your colleagues too.
Can you elaborate on that?

M5: Sure. Sometimes when a mathematician answers
a hard question, he has a new way of looking at
the problem or a new way of thinking about it. As
a researcher, when you see this, sometimes you
can use this idea to solve problems that you are
working on. Let me give you an example. We
were having trouble showing bounds for approxi-
mation techniques on this space with an unusual
norm. Someone realized that you could use this
particular partial differential equation to find these
bounds. This new idea made a lot of the other
problems easier. The idea wasn’t easy. It wasn’t
obvious at all that this partial differential equa-
tion was relevant. That was a great insight. But
once we had the idea, it allowed us to approach
questions that were inaccessible before.

I: So after this theorem came out, a lot of other the-
orems were proved using this idea?

M5: Oh yeah. But it doesn’t always have to be big
things … Sometimes when I read a proof, I get an
idea that helps me get around a little thing that I
was stuck with.

These mathematicians’ comments are consistent with Rav’s
(1999) provocative essay arguing that proofs rather than
theorems are the bearers of mathematical knowledge
because proofs reveal methods and strategies that are applic-
able in multiple contexts. As an example, Rav claims the
benefit of Euclid’s proof that there are infinitely many
primes was not the result, but the strategy of proving that a
set is infinite by assuming the set is finite and then using
the elements of this supposedly finite set to generate a new
element of that set – a strategy used to prove there are infi-
nitely many primes of the form 4k + 1, for instance. Other
philosophers have made similar claims (e.g., Rota, 1997).
For instance, Bressoud (1999) argues that challenging con-
jectures require mathematicians to refine their existing
methods or create new ones. “The value of a proof of a chal-
lenging conjecture should be judged, not by its cleverness
or elegance, or even its ‘explanatory power’, but by the
extent to which it enlarges our toolbox” (p. 190).

Reading proofs to find new methods is also consistent with
the fact that mathematicians often reprove theorems and
value multiple proofs of the same theorem (e.g., Avigad,
2006; Dawson, 2006), a practice that seems irrational if one
believes the primary purpose of proving is to provide con-
viction. Dawson (2006) argues that benefits of a new proof
of an old theorem include demonstrating the power of dif-
ferent methodologies and discovering new routes to the
theorem. “As in mountaineering, being first to the summit is
not the only worthwhile goal. It is also exciting to discover a
new route to reach it” (p. 279). Similarly, Avigad (2006) con-
tends new proofs of old theorems are valued because “praise
for the proof can be read, at least in part, as praise for the
method” (p. 107) and new proofs often reveal new methods.

Some mathematicians also mentioned that introducing stu-
dents to new methods was an important reason for presenting
proofs in their classrooms. In the excerpt below, M6 and I
were discussing a proof that √2 was irrational and I asked
him what he hoped students would gain from reading it.

I: What do you think a student would hopefully gain
from reading this proof? 

M6: [long pause] That’s a really tough question. I
haven’t really carefully thought about this. I
would say that you build up your family of exam-
ples of proofs, and you sort of have this
foundation of a bunch of examples of proofs that
you then get to draw on later on. You know, I’m
not exactly sure if I can encapsulate exactly
what’s in this proof. Certainly proof by contra-
diction is such a thing, but then, you know,
arguments based on parity of numbers, which are
also really common … So that’s another thing,
another tool that illustrates … right.

His response indicates that a benefit of reading this proof
was for students to be exposed to several reasoning methods
within a proof, including proof by contradiction and reason-
ing based on parity of numbers, with the hopes that they
could apply this in proofs they write in the future. When
asked what it meant for students to understand a proof, nearly
all participants mentioned having students apply the method
used in that proof to prove a different theorem. In the case
of the √2 is irrational, many participants believed a student
who understood the proof could prove √3 is irrational. 

An example of proof construction develop-
ing a new way of thinking
My colleague, Carolyn Maher, conducts longitudinal stud-
ies in which she videotapes students solving challenging
mathematical problems and formulating justifications for
their solutions. One example, described in Maher, Muter,
and Kiczek (2007), illustrates how the search for and pro-
duction of a proof led students to develop a powerful way
to conceptualize combinatorics problems. The episode that
I discuss occurred in tenth grade when five students –
Michael, Ankur, Brian, Jeff, and Romina – were trying to
determine how many pizzas could be formed if there were
five toppings to choose from. Michael’s classmates repre-
sented the pizzas by representing each pizza in a variety of
ways with a subset of the integers 1 through 5, where each
integer indicated the presence of one of the toppings. They
attempted to list every possible pizza (in other words, list
all possible subsets of the set {1, 2, 3, 4, 5}) and generated
31 pizzas, including a plain pizza with no toppings.

Rather than trying to count each of the pizzas, Michael
developed a powerful, novel way of conceptualizing the
problem. He represented pizzas using binary notation.
Below is an excerpt of Michael discussing his ways of think-
ing with his classmates:

I think it’s 32. I’ll tell you why … You know like a
binary system we learned a while ago? … The ones
would mean a topping; zero means no topping. So if
you had a four topping pizza, you have four different
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places in the binary system … You’ve got four top-
pings. This is like four places of the binary system. It
all equals 15.

Michael’s idea was that one can represent each four topping
pizzas as a string of four digits where each digit is a zero or
a one. Each slot in this four-digit number is associated with
a topping; a 1 in that location means that topping is on the
pizza while a 0 means it is not. (For example, if the first
location is associated with onions, 1000 would represent a
pizza with only onions while 0111 would represent a pizza
with all toppings except for onions). When Michael indi-
cates “it all equals 15”, this is because the binary number
1111 equals 15 in decimal notation. Like his classmates, he
considers the plain pizza (represented by 0000) as a special
case. If the plain pizza is included, you can add one to 15 to
obtain 16 pizzas. Later in Maher’s longitudinal study,
Michael and his classmates were able to adapt Michael’s
binary notation to solve a number of other related combina-
torics problems, some of which were very difficult (see
Maher, Muter, & Kiczek, 2007 [2]).

This episode illustrates how the construction of proofs
can allow students to reconceive mathematical domains and
generate new proving methods. Michael and his classmates
discovered they could recognize many combinatorics situa-
tions as sequences of binary strings, which enabled them to
solve combinatorics problems more efficiently and notice
connections between combinatorics problems with differ-
ent surface features. They also learned a method for solving
a particular type of combinatorics task – namely if there is
a one-to-one correspondence between a string of n 0’s and
1’s and the objects you are attempting to count, then the
total number of possible objects is the binary number repre-
sented by n 1’s plus one to account for the binary number 0.

Discussion
The goal of this paper is to investigate what we might want
students to learn from a proof by exploring how mathemati-
cians gain insight from a proof. Similar to the results in
Weber (2008), all nine mathematicians that I interviewed in
this study desired insight from the proofs that they read.
However, the insight they sought often went beyond expla-
nation, at least in the sense that I have defined it in this
paper. The mathematicians also sought ways to reconceive
the domains they were studying and methods that might be
useful for the problems they were researching. Importantly,
they listed these benefits among the reasons that they pre-
sented proofs to students in their teaching. Further, section
5 illustrates how students can potentially gain these types
of insights from the proofs they produce themselves.

This suggests that when proofs are presented in mathe-
matics classrooms, it is important to go beyond explanation
and justification. Hanna and Barbeau (2008) note that
although many mathematics educators have cited Rav’s
(1999) paper on how the purpose of proof is to reveal new
methods, these references are usually used in support of argu-
ments downplaying the role of formalism in mathematics
and emphasizing the dynamic social role in obtaining relia-
bility. I concur with their suggestion that an important, but
unexploited, purpose of proof in mathematics classrooms is

to introduce students to new methods they can use in their
own problem solving. Hanna and Barbeau (2008) provide
illustrative high school proofs that might be used in this man-
ner. Similarly, I also believe some proofs can help students
refine their images of important mathematical concepts and
domains. A complete discussion of how this might be done
is beyond the scope of this paper, but areas where this may
be considered are proofs that establish difficult geometry
conjectures by representing geometrical situations alge-
braically as points and lines in the Cartesian plane, justifying
curious arithmetic tricks using high school algebra, number-
theoretic proofs that represent arbitrary integers as products
of prime numbers, and representing combinatorics situations
as binary strings. Proofs of this type are present in the high
school and college mathematics curricula and, if exploited
effectively, have the potential to expand the ways in which
students represent fundamental mathematical ideas. 
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Notes
[1] See also D. Sandborg’s (1997) unpublished doctoral dissertation, Expla-
nation and mathematical practice, Pittsburgh, PA, University of Pittsburgh.
[2] See also A. Powell’s (2003) unpublished doctoral dissertation, So let’s
prove it!: Emergent and elaborated mathematical ideas in the discourse
and inscriptions of learners engaged in a combinatorial task, New
Brunswick, NJ, Rutgers University.
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