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In many countries, students encounter proof and proving
within geometry at junior or senior high schools. Proof prob-
lems with diagrams are standard tasks in the sense that most
proof problems in school geometry include diagrams that
indicate the meanings of the problems. A proof problem with
diagrams is a problem in which a statement is described with
reference to particular diagrams with symbols (one diagram
in most cases) and solvers are required to prove the state-
ment. An example of such a problem is as follows:

As shown in Figure 1, in isosceles triangle ABC (AB
= AC), we draw perpendicular lines BD and CE to
sides AC and AB from points B and C, respectively.
Prove that AD = AE.

Proof (summary):

In ΔABD and ΔACE, ∠ADB = ∠AEC = 90˚, 
AB = AC, ∠BAD = ∠CAE (common).

Hence, ΔABD ≡ ΔACE and therefore AD = AE.

Lakatos insisted that “informal, quasi-empirical, mathe-
matics […] grow[s] through […] the incessant improvement
of guesses by speculation and criticism, by the logic of
proofs and refutations” (Lakatos, 1976, p. 5). He described
processes of mathematical development through the rational
reconstruction of actual histories of the Descartes-Euler con-
jecture on polyhedra and uniform convergence, discussed
more fully later in the article. Lakatos’s ideas can form a
basis for authentic learning that mirrors a process of mathe-
matical progress through conjectures, proofs, and refutations
(Lampert, 1990). In this article, we show how a specific type
of proof problem with diagrams functions as an opportu-
nity for students to experience certain aspects of proofs and
refutations. 

Proof problems with diagrams
Contrary to general propositions in mathematics, a proof
problem with diagram shows a statement according to the
attached diagram. In Euclid’s Elements, for example, propo-
sitions are stated in general and abstract words without any
symbols or diagrams, and diagrams only appear in the phase
of proving the propositions. On the other hand, in school
geometry, students are usually given proof problems for
which diagrams and symbols have already been prepared
(Herbst & Brach, 2006). This is generally because state-

ments can be described more simply and clearly with a com-
bination of diagrams and symbols. Diagrams also make it
possible to visually grasp the meanings of problem state-
ments (Herbst, 2002).

There are two interpretations of a proof problem with a
diagram. The first is that the problem questions whether the
statement is true only in the attached diagram. The second
is that the problem deals with a certain general class to
which the attached diagram belongs. In the above example,
the first interpretation asks for proof that AD = AE only for
the triangle in Figure 1; the second interpretation considers
many possible shapes of isosceles triangle ABC, and asks
whether segment AD is equal to segment AE for these
shapes (see Figure 2).

In this article, we focus on the second interpretation
because it enables us to achieve a process of proofs and refu-
tations. For example, in the above problem, if we draw
various shapes of isosceles triangle ABC to verify whether
AD = AE in all of these isosceles triangles, we can find a
case in which perpendicular lines from points B and C do
not intersect with sides AC and AB, respectively (Figure 3).
In a mathematical sense, this case is not a counterexample,
but a non-example. The above problem assumes, though
implicitly, that these perpendicular lines and sides intersect
with each other and segments AD and AE can be constructed
(thus, its class of objects is acute isosceles triangles). Under
this assumption, the problem statement claims that these two
segments are equal. A counterexample satisfies the assump-
tion of a proposition but not the conclusion, while a
non-example does not satisfy the assumption. Therefore,
Figure 3 should be regarded as a non-example rather than a
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Figure 1. A diagram attached to a proof problem.
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counterexample because this diagram does not satisfy the
above assumption of the problem statement.

Thus, if the second interpretation of a proof problem with
diagrams is adopted, a class of objects in a problem may
become vague as it is sometimes inevitable that the attached
diagram includes an implicit assumption. This situation is
quite different from general propositions in mathematics, in
which it is required to make explicit the class of objects in
the proposition by specifying its assumption (Jahnke, 2007).
However, this vagueness may enable students to find coun-
terexamples and non-examples by transforming the diagram,
to make hidden assumptions explicit, and to look for new
statements that hold for these counterexamples and non-
examples. In the following, we discuss such mathematical
activity with reference to a specific action in Proofs and
Refutations (Lakatos, 1976).

Increasing content by deductive guessing
Lakatos’s research is well known in the mathematics edu-
cation research community, and some researchers explicitly
refer to the mathematical actions in Proofs and Refutations
(Lakatos, 1976). For instance, Balacheff (1991), Reid
(2002), and Yim, Song and Kim (2008) deal with various
students’ processes regarding conjectures, proofs, and refu-
tations, and parts of the students’ responses to
counterexamples are described as “monster barring” or
“exception barring”. Larsen and Zandieh (2008) construct a
framework that consists of monster barring, exception bar-
ring, and “proof analysis” (lemma incorporation), and they
argue that this framework can not only serve as a description
and explanation of students’ mathematical activity, but also
as a tool for designing instruction to support guided rein-
vention. Monster barring, exception barring, and lemma
incorporation relate to the restriction of a conjecture’s

domain to exclude its counterexamples.
In contrast, we address Lakatos’s (1976) idea of “increas-

ing content by deductive guessing” (p. 76) with which
mathematics education researchers have not yet explicitly
dealt. Lakatos meant that, after proving a conjecture and fac-
ing its counterexamples or non-examples, one deductively
invents a more general conjecture that holds even for these
counterexamples or non-examples. This action is quite dif-
ferent from monster barring, exception barring, and lemma
incorporation because it is a method for extending the
domain of a conjecture. Our research places more emphasis
on this action, although we align with Larsen and Zandieh’s
research in that we approach instructional design from a
viewpoint of task design [1].

Lakatos illustrated the idea of increasing content by
deductive guessing with the Descartes-Euler conjecture on
polyhedra, expressed as V – E + F = 2, where V, E, and F
are the numbers of vertices, edges, and faces of polyhedra,
respectively. First, a certain polyhedron “picture frame”
(Figure 4b) was proposed as a counterexample that refuted
this conjecture, as in this case, V – E + F = 0. However, we
can use two polyhedra (Figure 4a) to construct the picture
frame by pasting them together (Figure 4b). Because each
value of V – E + F of the two polyhedra in Figure 4a is 2,
the sum of the values is 4. However, the above pasting
results in the four pasted faces vanishing, and decreases the
number of vertices, so that it is the same as the number of
edges. This examination explains why V – E + F = 0 for the
picture frame. Furthermore, by pasting the polyhedron
shown in Figure 4c to the picture frame, and considering
the increase and decrease in the numbers of vertices, edges,
and faces, we can similarly reason that V – E + F = – 2 for
polyhedra with two holes (Figure 4d). Continuing this exam-
ination leads to a more general conjecture that V – E + F =
2 – 2n for polyhedra, with n holes and with all their faces
simply-connected [2].

The notion of increasing content by deductive guessing
is applicable not only to counterexamples, but also to non-
examples. In fact, in the story of Proofs and Refutations,
although the picture frame was at first a counterexample of
the primitive conjecture that V – E + F = 2 for all polyhe-
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Figure 2. Different shapes of isosceles triangle ABC.

Figure 3. A non-example.

Figure 4. Increasing content by deductive guessing (slightly
modified from Lakatos, 1976, p. 77).
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dra, the primitive conjecture was then restricted to simple
polyhedra through lemma incorporation. Through this
restriction, the picture frame became a non-example of the
restricted conjecture because it was not a simple polyhedron.
After that, a more general conjecture was invented by deduc-
tive guessing, so that the invented conjecture could include
the picture frame as an example.

There are two characteristics of increasing content by
deductive guessing. The first is related to “increasing con-
tent”, that is, the product of invention. A new invented
conjecture is more general than the previous one in that it
holds even for counterexamples or non-examples of the pre-
vious one. In the above example, the new conjecture is true
for the picture frame that was considered as a counterexam-
ple of the primitive conjecture, and it also generally explains
polyhedra with n holes that were not initially considered. The
second characteristic is related to “by deductive guessing”,
that is, the method of invention. A new conjecture is pro-
duced by a deductive method, though there are different
types of mathematical reasoning, such as induction and anal-
ogy. In the same example, the new conjecture was not
produced inductively by counting the numbers of vertices,
edges, and faces in various polyhedra, observing these num-
bers, and finding their regularity. Instead, it was invented
deductively by reasoning from polyhedra whose values of
V – E + F were already known, pasting together these poly-
hedra, and considering the change in the numbers of vertices,
edges, and faces. When Lakatos considered increasing con-
tent by deductive guessing, he thought about producing
statements that were difficult to find non-deductively.

Increasing content by deductive guessing can be seen as an
important action for mathematical progress. In fact, Lakatos for-
mulated this action as one of his heuristic rules. A heuristic is
both evaluative and normative for Lakatos, in that “the heuris-
tic-methodology looks backward to identify the rules that made
such a growth possible in the past, and at the same time it looks
forward to advise on how to obtain progress in the future” (Mot-
terlini, 2002, p. 34, emphasis in original). Thus, we can see
increasing content by deductive guessing as a method that has
enabled the development of mathematics in the past, and as a
compass indicating a direction for expanding mathematics in
the future. In particular, Lakatos considered this action to be a
leitmotiv of proofs and refutations because it represents
humans’ brave attempts to overcome counterexamples by
inventing a more general conjecture (Stöltzner, 2002).

It may not be appropriate to directly introduce the notion
of increasing content by deductive guessing into school
mathematics because Lakatos’s main interest lay in describ-
ing a process of growth in the discipline of mathematics and
there is a great difference between school mathematics and
mathematical research. For example, in school mathematics,
the domain of geometry functions as the main opportunity
for students to learn about proof and proving. Due to such
educational contexts, some characteristics of increasing con-
tent by deductive guessing might not match with school
geometry. In such cases, it may be necessary to elaborate a
modified version of this action for school geometry. In the
next section, we discuss such modification with reference
to proof problems with diagrams.

Extending statements in proof problems with
diagrams
Proof problems with diagrams are similar to the Descartes-
Euler conjecture on polyhedra in Proofs and Refutations
(Lakatos, 1976), in which the obscure meanings of polyhe-
dra led to a variety of counterexamples, opening up
mathematical possibilities for refinement of the conjecture
through continuous interactions between proofs and refuta-
tions. A class of objects in a proof problem with a diagram
may also be vague because, as illustrated earlier, the
attached diagram may include an implicit assumption. We
wish to capitalize on this vagueness of proof problems with
diagrams to provide students with an opportunity to experi-
ence proofs and refutations.

It may not, however, be appropriate to directly adopt the
second characteristic of Lakatos’s idea of increasing content
by deductive guessing as mentioned in the previous section.
In the problem shown at the start of this article, for example,
some students would first extend sides AC and AB to pro-
duce intersection points D and E with the perpendicular lines
from points B and C, respectively (Figure 5). They then
would conjecture that AD = AE even in this case. At this
point, they may make this conjecture not deductively by
using the previous proof [3], but perceptually and inductively
from the appearance of Figure 5, or analogically from the
case of acute isosceles triangles (Figure 1). Considering that
deductive reasoning is abstract and difficult for many stu-
dents, it is a merit of proof problems in geometry that
students are able to visually grasp the meaning of the state-
ment and the deductive process. Thus, by changing “sides
AC and AB” in the problem statement to “lines AC and AB”
or “rays CA and BA”, it is possible to invent a more general
statement that holds even for obtuse isosceles triangles. How-
ever, this invention can be performed not only by a deductive
method, but also by inductive or analogical methods.

For this reason, we focus on the first characteristic of
increasing content by deductive guessing in order to achieve
proofs and refutations in proof problems with diagrams. In
other words, we address an action to extend a statement so
that a new statement can include counterexamples and non-
examples of the primitive statement without restricting how
this extension is performed. In the next section, we describe
an episode from an eighth grade (13–14 years old) classroom
to demonstrate that proof problems with diagrams can function
as an opportunity for students to experience this extension.

An episode: parallelograms, diagonals and
perpendiculars
The episode is taken from our larger study that aims to
develop, through design experiments, a set of tasks and asso-
ciated teachers’ guidance to prompt students to engage in
proofs and refutations (Komatsu & Tsujiyama, 2013). The
third author taught a sequence of three lessons (50 minutes per
lesson) to 35 eighth graders in a junior high school in Japan
(all names are pseudonyms). We were all involved in the les-
son design, and the first author observed all of the lessons.

The students had learnt to prove geometric statements
related to various properties of triangles and quadrilaterals,
using conditions for congruent triangles. They had also
learnt the hierarchical classification of quadrilaterals where
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a square, rhombus, and rectangle are special cases of a par-
allelogram.

Primitive statement and its proofs

The first lesson treated a primitive statement and its proofs.
We describe the first lesson only briefly, because the focus of
this article is on the students’ processes after proof construc-
tion. The teacher first proposed the following problem:

In parallelogram ABCD (Figure 6), we draw perpen-
dicular lines AE and CF to diagonal BD from points A
and C, respectively. Prove that quadrilateral AECF is a
parallelogram.

As discussed earlier, we interpret this problem to deal with
not only the particular shape drawn in Figure 6, but also
other shapes of parallelogram ABCD. 

After planning how to solve this problem, the students
worked individually or cooperatively for about twenty min-
utes. Meanwhile, the teacher had a student, Emi, write her
proof on the blackboard, and then explain it to other students.

Emi’s Proof (summary [4]):

In ΔABE and ΔCDF,

∠AEB = ∠CFD = 90˚… (1)

AB = CD … (2)

∠ABE = ∠CDF … (3)

From (1)–(3), ΔABE ≡ ΔCDF, and therefore AE = CF
… (4)

From (1), ∠AEF = ∠CFE = 90˚ and therefore AE //
CF … (5)

From (4) and (5), quadrilateral AECF is a parallelo-
gram.

In their worksheets, nineteen students had written the same
proof as Emi’s, and four students had instead showed the
congruence of triangles ADE and CBF to deduce AE = CF;
four students wrote out both proofs [5]. Another three wrote
different valid proofs, and the remaining students could not
reach full proofs or wrote incorrect proofs.

Non-examples

The teacher started the second lesson by questioning
whether quadrilateral AECF was still a parallelogram, even
if the shapes of parallelogram ABCD were different from the
attached diagram (Figure 6). Many students answered yes;
only Naoki responded that it might be not be in some cases.
The students then started to draw various shapes of paral-
lelogram ABCD to investigate the teacher’s question. After
that, the teacher asked whether anyone had found an impos-
sible case. Many students gave a square and rhombus, as
they could not produce quadrilateral AECF in these figures
because points E and F coincided on the intersection point of
the diagonals of parallelogram ABCD (Figure 7, top and
middle, overleaf) [6]. These students seemed to consider
these figures as special cases of a parallelogram, based on
their understanding of the hierarchical classification of
quadrilaterals.

Next, Rie drew the parallelogram ABCD, shown in Figure
7 (bottom), on the blackboard and stated that:

This is a very thin parallelogram. I drew diagonal BD,
and wanted to draw a perpendicular line from here [point
A]. But, if I draw the perpendicular line [the dotted line
in Figure 7, bottom], it does not go into the parallelo-
gram, and point E appears here [on the extended line of
diagonal BD]. If I draw from here [point C], point F
appears here [on the extended line of diagonal BD]. So,
I do not think the parallelogram is made.

As mentioned in the example about isosceles triangle in
the previous section, the three cases in Figure 7 are not coun-
terexamples but non-examples, since they do not satisfy the
assumption of the primitive problem; this problem implicitly
assumes that it is possible to construct quadrilateral AECF,
and under this assumption, it claims that quadrilateral AECF
is a parallelogram. 

The classroom discussion then focused on the case in Fig-
ure 7 (bottom). The following are some representative
comments by students.

Ken: In Rie’s diagram, it is first of all impossible to
draw [perpendicular lines] to diagonal BD. It
is impossible to make the quadrilateral
[AECF] itself. If BD is not a diagonal but a
line, it would extend without limit, so I think it
is possible to make the quadrilateral, it is pos-
sible to make the parallelogram. But, because
of diagonal BD, I think it is indeed impossible.

Figure 5. Extension of the statement.

Figure 6. A diagram attached to a proof problem in the
episode.
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Makoto: Maybe Ken meant that a diagonal is a seg-
ment. We can’t extend a diagonal. I think it
becomes possible if we extend [diagonal BD],
but [I am puzzled] whether we can extend it.

Asuka: I think similar things to them [Ken and
Makoto]. I think that if we extend diagonal
BD, we can make perpendicular lines. Then,
the parallelogram [AECF] is made, which is
bigger than the parallelogram [ABCD].

Like Rie, Ken stated that it was impossible to construct
quadrilateral AECF in the case of Figure 7 (bottom). He
mentioned the possibility of extending diagonal BD, but
finally came to have the same idea as Rie. Makoto also men-
tioned this possibility, but was unsure whether extending the
diagonal was permitted. In contrast, Asuka argued strongly
for extending diagonal BD (Figure 8).

Extending the statement

The third lesson dealt with a class of non-examples in
which the perpendicular lines from points A and C did not
intersect with diagonal BD. In the beginning, the students
independently drew various diagrams of the non-exam-
ples in their worksheets (Figure 9) and, therefore,
considered not one diagram, but a general class of objects
in which the perpendicular lines intersected with line BD
but not diagonal BD.

The subsequent classroom discussion was as follows:

Teacher: If we draw perpendicular lines to the extended
line of BD, we can make quadrilateral AECF.
In this case, what is quadrilateral AECF?

Students:Parallelogram.

Teacher: Really? I can’t see this as parallelogram.

Student: (Uncertain) Yes [parallelogram].

Teacher: For example, does it result in a quadrilateral
whose condition is stronger?

Student: (Uncertain) Rhombus.

Teacher: Yeah, is there any case in which this becomes
rhombus?

Student: (Uncertain) Square.

Teacher: Someone said square. Is there any case which
gives square? If we think so, what this [quadri-
lateral AECF] becomes is still unknown. [7]

In this exchange, the students initially conjectured that
quadrilateral AECF would become a parallelogram for the
case of Figure 9. The teacher then said that the quadrilateral
might be a more special parallelogram, and the students
answered that it might become a rhombus or square. In
response to their answers, the teacher stated that what type
of quadrilateral AECF could be was still unknown.

The students then investigated this teacher’s question.
During this investigation, the teacher mentioned Emi’s proof
from the first lesson, and told the students that they could
utilize this proof or construct a new proof from the begin-
ning. After about fifteen minutes, the teacher had Satoshi
write his idea on the blackboard.

Satoshi’s proof (summary):

In ΔAEB and ΔCFD,

∠AEB = ∠CFD = 90˚ … (1)

AE // CF … (2)

AB = CD … (3)

∠ABD = ∠CDB … (4)

180 – ∠ABD = 180 –∠CDB … (5)

Figure 7. Students’ non-examples.

Figure 8. Extension of diagonal BD.
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∠ABE = ∠CDF … (6)

From (1), (3), and (6), ΔAEB ≡ ΔCFD, and therefore
AE = CF … (7)

From (2) and (7), quadrilateral AECF is a parallelogram.

Satoshi said that he constructed his proof from the beginning
without utilizing Emi’s proof. Then, the teacher asked
whether any student used a different method to Satoshi, and
Maika answered:

I made [a proof for the case in Figure 9] by utilizing the
proof [by Emi] for the previous diagram [Figure 6],
where E and F were inside the parallelogram [ABCD].
Only the positions of alternate angles were different,
and the others were all the same. It does not matter
whether E and F are inside or outside, and I think
[quadrilateral AECF] still becomes a parallelogram. 

Thus, Maika intended to utilize Emi’s proof by changing
only the part that was not applicable to the case in Figure 9
and by applying the other parts directly to this case. When
deducing the congruence of triangles AEB and CFD, it is
necessary to change the part that shows the congruence of
angles ABE and CDF. However, Maika wrote on her work-
sheet “from alternate angles, ∠FDC = ∠EBA”. That is,
although she noticed the necessity of changing this part, she
was not able to modify this appropriately.

At the end of the third lesson, the teacher said, “This is the
problem in the first lesson, but you previously said that you
could not produce this figure [quadrilateral AECF] in this
case [Figure 7, bottom]. Now, how should we change this
problem so that it can include this case?” Emi and Daisuke
answered that it was sufficient to change diagonal BD in
the first lesson’s problem to line BD. Thus, the students were
able to extend the primitive problem and to invent a more
general statement such that in parallelogram ABCD, if
quadrilateral AECF is constructed by drawing perpendicular
lines AE and CF to line BD from points A and C, respec-
tively, this quadrilateral is a parallelogram. As mentioned
previously, they considered a general class of objects rather
than one diagram, and therefore found that this statement
held for cases in which quadrilateral ABCD was a parallel-
ogram in general, with the exception of a square and a
rhombus.

Concluding remarks
Lakatos wrote his book Proofs and Refutations to show that
mathematics progressed gradually with problems, conjec-
tures, proofs, and refutations, and he regarded increasing
content by deductive guessing as an important mathematical
action for this progress. In this article, we have shown how
proof problems with diagrams can function as an opportu-
nity for students to experience a process of proofs and
refutations, and so contribute to the introduction of authen-
tic mathematical activity in regular classrooms based on
standard tasks in school geometry. Of course, we do not
intend to claim that all proof problems with diagrams guar-
antee the achievement of proofs and refutations. It is
necessary to utilize suitable problems in which counterex-
amples or non-examples can be found by changing the
location or shape of the attached diagram.

Among the characteristics of increasing content by deduc-
tive guessing, we have focused on the extension of a
conjecture without emphasizing how this extension is per-
formed. The task in our episode had the possibility of an
opportunity in which students could deductively extend their
previous conjecture. For example, at the end of the third
lesson, Daisuke wrote on his worksheet, “I could determine
the uncertain shape through proving” (our emphasis). This
comment showed that Daisuke engaged in increasing con-
tent by deductive guessing. Nevertheless, many students
did not rely on deductive methods, such as utilizing their
previous proofs, when they first made the extended conjec-
ture. Hence, it may be that our task actualizes quite an
ordinary process of conjecture-by-staring-at-the-diagram to
proof. However, a feature of our task is its potential to enrich
students’ activities after proving a primitive statement, and a
proof problem with a diagram can facilitate students’
attempts to refute the primitive statement by discovering its
counterexamples and non-examples and to overcome this
refutation by inventing a more general statement.

Finally, we mention two implications for research. First,
the episode we have described illustrates a difficulty that stu-
dents may face during the extension of a conjecture. In the
third lesson, if the students had utilized Emi’s proof con-
structed in the first lesson, it would have been easier to prove
that quadrilateral AECF in Figure 9 was a parallelogram,

Figure 9. Quadrilateral AECF constructed by the extension
of diagonal BD.
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because it was sufficient to change only the part that showed
the congruence of angles ABE and CDF [8]. However, few
students reflected on Emi’s proof, and even Maika, who
mentioned her attempts to use this proof, was unable to mod-
ify it appropriately. This episode implies a necessity to
develop an instructional strategy that can lead students to
prove an extended conjecture more efficiently.

Second, although the students in our episode extended the
primitive problem by non-deductive methods, it is still
unclear how and why they did not use a deductive method.
We have some hypotheses about the students’ behavior. They
might think that if they could construct quadrilateral AECF as
shown in Figure 9, the quadrilateral would automatically
become a parallelogram. In other words, they might not be
able to differentiate between whether they could make
quadrilateral AECF by extending diagonal BD and whether
that quadrilateral became a parallelogram. The students also
might make their conjecture analogically, according to their
feeling of some similarity and continuity between Figures 6
and 9, or empirically, from the appearance of Figure 9.

Mathematics education researchers have deepened their
understanding of students’ behaviors about restricting a con-
jecture to exclude its counterexamples by, for example,
describing the students’ behaviors or constructing frame-
works that enable this description (e.g., Balacheff, 1991;
Larsen & Zandieh, 2008). In the future, it will be necessary to
construct a framework to describe and analyze how students
invent a conjecture that holds for previous counterexamples
and non-examples in order to design an instructional
approach based on students’ existing strategies.

Notes
[1] Some researchers have dealt with generalizing a statement by its proof
though they do not refer to increasing content by deductive guessing. See, for
example, De Villiers (1990), Hanna and Jahnke (1996) or Miyazaki (2000).
[2] Though Lakatos introduced the concept of normal polyhedra when
describing this process, we omit it for simplicity.
[3] It is possible to find this conjecture by changing the reason for the con-
gruence of angles BAD and CAE from the common angles to vertical
angles. 
[4] Though Emi wrote all the reasons in her proof, we omit them here for
simplicity. We do the same for Satoshi’s proof, shown later.
[5] In the lesson, Kaori also wrote her proof on the blackboard that deduced
the congruence of triangles ADE and CBF. Because we gathered the stu-
dents’ worksheets after the first lesson, some students might have copied the
proofs by Emi or Kaori. 
[6] All diagrams in Figures 7–9 are the students’ actual drawings.
[7] Though the teacher’s comments in this excerpt make sense in a natural
language sense, they do not make sense in a mathematical sense, because
despite the hierarchical classification of quadrilaterals, the teacher denied
the possibility of a parallelogram and accepted the possibility of a rhom-
bus or square.
[8] Kaori’s proof could be applied directly to Figure 9 without any modification.
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